論文の概要: Auto-Bench: An Automated Benchmark for Scientific Discovery in LLMs
- arxiv url: http://arxiv.org/abs/2502.15224v1
- Date: Fri, 21 Feb 2025 05:35:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 23:44:09.974551
- Title: Auto-Bench: An Automated Benchmark for Scientific Discovery in LLMs
- Title(参考訳): Auto-Bench: LLMの科学的発見のための自動ベンチマーク
- Authors: Tingting Chen, Srinivas Anumasa, Beibei Lin, Vedant Shah, Anirudh Goyal, Dianbo Liu,
- Abstract要約: 自然科学と社会科学の両方において科学的発見のための大規模言語モデル(LLM)を評価するための新しいベンチマークを導入する。
我々のベンチマークは因果グラフ発見の原理に基づいており、隠れ構造を発見し、有効な正当性を生成することを含む最適な決定を行うためのモデルに挑戦する。
我々は,GPT-4,Gemini,Qwen,Claude,Llamaを含む最先端のLCMを評価し,問題を複雑化するにつれて性能低下を観測した。
- 参考スコア(独自算出の注目度): 23.608962459019278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given the remarkable performance of Large Language Models (LLMs), an important question arises: Can LLMs conduct human-like scientific research and discover new knowledge, and act as an AI scientist? Scientific discovery is an iterative process that demands efficient knowledge updating and encoding. It involves understanding the environment, identifying new hypotheses, and reasoning about actions; however, no standardized benchmark specifically designed for scientific discovery exists for LLM agents. In response to these limitations, we introduce a novel benchmark, \textit{Auto-Bench}, that encompasses necessary aspects to evaluate LLMs for scientific discovery in both natural and social sciences. Our benchmark is based on the principles of causal graph discovery. It challenges models to uncover hidden structures and make optimal decisions, which includes generating valid justifications. By engaging interactively with an oracle, the models iteratively refine their understanding of underlying interactions, the chemistry and social interactions, through strategic interventions. We evaluate state-of-the-art LLMs, including GPT-4, Gemini, Qwen, Claude, and Llama, and observe a significant performance drop as the problem complexity increases, which suggests an important gap between machine and human intelligence that future development of LLMs need to take into consideration.
- Abstract(参考訳): LLMは人間のような科学的研究を行い、新しい知識を発見し、AI科学者として振る舞うことができるのか?
科学的発見は、効率的な知識の更新と符号化を要求する反復的なプロセスである。
環境を理解し、新しい仮説を特定し、行動について推論するが、科学的な発見のために特別に設計された標準ベンチマークは存在しない。
これらの制約に対応するために,自然科学と社会科学の両方において科学的な発見に必要なLCMを評価するための新しいベンチマークである「textit{Auto-Bench}」を導入する。
我々のベンチマークは因果グラフ発見の原理に基づいている。
隠された構造を解明し、妥当な正当化を含む最適な決定を行うためのモデルに挑戦する。
オラクルと対話することで、モデルは戦略的介入を通じて、基礎となる相互作用、化学と社会的相互作用に対する理解を反復的に洗練する。
我々は、GPT-4、Gemini、Qwen、Claude、Llamaを含む最先端のLLMを評価し、問題を複雑化するにつれて大幅な性能低下を観察する。
関連論文リスト
- The Evolving Role of Large Language Models in Scientific Innovation: Evaluator, Collaborator, and Scientist [3.7803247326675162]
科学革新は、LLM(Large Language Models)の急速な進歩によって、パラダイムシフトが進んでいる。
本調査では,3つの階層レベル – 評価,コラボレーション,科学者 – にまたがる科学革新におけるLLMの役割を,包括的に分類する枠組みを提案する。
論文 参考訳(メタデータ) (2025-07-16T00:11:01Z) - Truly Assessing Fluid Intelligence of Large Language Models through Dynamic Reasoning Evaluation [75.26829371493189]
大きな言語モデル(LLM)は、人間のような思考を反映する印象的な推論能力を示している。
既存の推論ベンチマークでは、ドメイン固有の知識(結晶化インテリジェンス)に焦点を当てるか、解釈可能性に欠ける。
階層的認知フレームワークを基盤とした動的推論評価ベンチマークであるDRE-Benchを提案する。
論文 参考訳(メタデータ) (2025-06-03T09:01:08Z) - Introspective Growth: Automatically Advancing LLM Expertise in Technology Judgment [0.0]
大きな言語モデル(LLM)は、概念的理解の兆候をますます示している。
彼らの内部知識の多くは、潜伏し、ゆるやかに構造化され、アクセスや評価が難しいままである。
LLMの理解を改善するための軽量でスケーラブルな戦略として,自己問合せを提案する。
論文 参考訳(メタデータ) (2025-05-18T15:04:02Z) - Benchmarking Spatiotemporal Reasoning in LLMs and Reasoning Models: Capabilities and Challenges [4.668749313973097]
本稿では,Large Language Models (LLMs) とLarge Reasoning Models (LRMs) を3段階の推論複雑性で体系的に評価する。
モデルが直接、あるいはPython Code Interpreterによって応答する26の課題をキュレートします。
LRMは、様々な難易度を持つタスク間で堅牢なパフォーマンスを示し、しばしば従来の第一原理に基づく手法と競合する。
論文 参考訳(メタデータ) (2025-05-16T18:32:35Z) - Scaling and Beyond: Advancing Spatial Reasoning in MLLMs Requires New Recipes [84.1059652774853]
MLLM(Multimodal Large Language Models)は、一般的な視覚言語タスクにおいて印象的な性能を示す。
近年の研究では、空間的推論能力の限界が明らかにされている。
この空間的推論の欠如は、MLLMが物理的世界と効果的に相互作用する能力を著しく制限する。
論文 参考訳(メタデータ) (2025-04-21T11:48:39Z) - LLM-SRBench: A New Benchmark for Scientific Equation Discovery with Large Language Models [20.800445482814958]
LLM(Large Language Models)は、仮説生成に埋め込まれた科学的知識を活用する可能性に関心を寄せている。
既存のベンチマークは、LLMによる暗記の影響を受けやすい一般的な方程式に依存しており、発見を反映しないインフレーションされたパフォーマンス指標に繋がる。
本稿では,4つの領域にまたがる239の課題を伴う総合的なベンチマークであるLSM-SRBenchを紹介する。
我々のベンチマークは、2つの主要なカテゴリで構成されている: LSR-Transformは、一般的な物理モデルからあまり一般的でない数学的表現に変換し、記憶された形式を超えた推論をテストする。
論文 参考訳(メタデータ) (2025-04-14T17:00:13Z) - ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition [67.26124739345332]
大規模言語モデル(LLM)は科学的研究を支援する可能性を示しているが、高品質な研究仮説を発見する能力はいまだ検討されていない。
我々は,LLMを科学的発見のサブタスクのほぼ十分セットで評価するための,最初の大規模ベンチマークを紹介する。
学術論文から重要コンポーネント(研究質問、背景調査、インスピレーション、仮説)を抽出する自動フレームワークを開発する。
論文 参考訳(メタデータ) (2025-03-27T08:09:15Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - Large Language Models Think Too Fast To Explore Effectively [0.0]
大規模言語モデルが、特にオープンなタスクにおいて、効果的に探索できる範囲は、まだ不明である。
本研究では、Little Alchemy 2をパラダイムとして、オープンエンドタスクにおいて、LLMが人間を超えることができるかどうかを検討する。
論文 参考訳(メタデータ) (2025-01-29T21:51:17Z) - Improving Scientific Hypothesis Generation with Knowledge Grounded Large Language Models [20.648157071328807]
大規模言語モデル(LLM)は、既存の知識を分析することによって、新しい研究の方向性を特定することができる。
LLMは幻覚を発生させる傾向がある。
我々は,知識グラフから外部構造的知識を統合することで,LLM仮説の生成を促進するシステムKG-CoIを提案する。
論文 参考訳(メタデータ) (2024-11-04T18:50:00Z) - GIVE: Structured Reasoning of Large Language Models with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを融合して、最小の外部入力で正確な推論を改善する新しい推論手法である。
GIVE は LLM エージェントをガイドして,最も関連する専門家データ (observe) を選択し,クエリ固有の発散思考 (reflect) に従事し,その情報を合成して最終的な出力 (speak) を生成する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - SciKnowEval: Evaluating Multi-level Scientific Knowledge of Large Language Models [35.98892300665275]
SciKnowEvalベンチマーク(SciKnowEval benchmark)は,5つの科学的知識の段階にわたる大規模言語モデル(LLM)を評価するフレームワークである。
これらのレベルは、記憶、理解、推論、識別、応用を含むLLMにおける科学知識の幅と深さを評価することを目的としている。
ゼロショットと少数ショットのプロンプト戦略を用いて、26の高度なオープンソースおよびプロプライエタリなLCMをベンチマークした。
論文 参考訳(メタデータ) (2024-06-13T13:27:52Z) - ALCM: Autonomous LLM-Augmented Causal Discovery Framework [2.1470800327528843]
我々は、データ駆動因果探索アルゴリズムと大規模言語モデルとを相乗化するために、ALCM(Autonomous LLM-Augmented Causal Discovery Framework)という新しいフレームワークを導入する。
ALCMは、因果構造学習(英語版)、因果ラッパー(英語版)、LLM駆動因果リファクター(英語版)の3つの統合的な構成要素から構成される。
我々は、よく知られた7つのデータセットに2つのデモを実装することで、ALCMフレームワークを評価する。
論文 参考訳(メタデータ) (2024-05-02T21:27:45Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
本稿では,スリムプロキシモデルを用いた大規模言語モデル (LLM) における知識不足を検知する新しい協調手法であるSlimPLMを提案する。
パラメータがはるかに少ないプロキシモデルを採用し、回答を回答としています。
ヒューリスティックな回答は、LLM内の既知の未知の知識と同様に、ユーザの質問に答えるために必要な知識を予測するのに使用される。
論文 参考訳(メタデータ) (2024-02-19T11:11:08Z) - Discovery of the Hidden World with Large Language Models [95.58823685009727]
本稿では,大きな言語モデル(LLM)を導入してギャップを埋めるCausal representatiOn AssistanT(COAT)を提案する。
LLMは世界中の大規模な観測に基づいて訓練されており、構造化されていないデータから重要な情報を抽出する優れた能力を示している。
COATはまた、特定変数間の因果関係を見つけるためにCDを採用し、提案された要因を反復的に洗練するためにLSMにフィードバックを提供する。
論文 参考訳(メタデータ) (2024-02-06T12:18:54Z) - SciInstruct: a Self-Reflective Instruction Annotated Dataset for Training Scientific Language Models [57.96527452844273]
我々はSciInstructを紹介した。SciInstructは、大学レベルの科学的推論が可能な科学言語モデルを訓練するための科学指導スイートである。
我々は、物理学、化学、数学、公式な証明を含む多種多様な高品質なデータセットをキュレートした。
SciInstructの有効性を検証するため、SciInstruct、すなわちChatGLM3(6Bと32B)、Llama3-8B-Instruct、Mistral-7B: MetaMathを用いて言語モデルを微調整した。
論文 参考訳(メタデータ) (2024-01-15T20:22:21Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
拡張ベンチマークスイートSciBench for Large Language Model (LLM)を導入する。
SciBenchには、数学、化学、物理学の分野から、さまざまな大学レベルの科学的問題を含むデータセットが含まれている。
その結果、現在のLLMは満足のいく性能を達成できないことが判明し、全体のスコアは43.22%に過ぎなかった。
論文 参考訳(メタデータ) (2023-07-20T07:01:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。