論文の概要: Can LLMs make trade-offs involving stipulated pain and pleasure states?
- arxiv url: http://arxiv.org/abs/2411.02432v1
- Date: Fri, 01 Nov 2024 16:22:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:02:19.258536
- Title: Can LLMs make trade-offs involving stipulated pain and pleasure states?
- Title(参考訳): LLMは、規定された痛みと快楽状態を含むトレードオフを行うことができるか?
- Authors: Geoff Keeling, Winnie Street, Martyna Stachaczyk, Daria Zakharova, Iulia M. Comsa, Anastasiya Sakovych, Isabella Logothesis, Zejia Zhang, Blaise Agüera y Arcas, Jonathan Birch,
- Abstract要約: プレジャーと痛みは、モチベーションの対立を解決するための共通の通貨を提供することによって、人間の意思決定において重要な役割を果たす。
大規模言語モデルが選択シナリオにおける快楽と苦痛のモチベーションを再現できるかどうかは、明らかな問題である。
我々は,ポイントを最大化することが目標とする単純なゲームを用いてこの問題を探索するが,ポイント最大化オプションが痛みのペナルティを誘発するとされるか,ポイント非最大化オプションが快楽報酬を誘導すると言われている。
- 参考スコア(独自算出の注目度): 1.0953418699962014
- License:
- Abstract: Pleasure and pain play an important role in human decision making by providing a common currency for resolving motivational conflicts. While Large Language Models (LLMs) can generate detailed descriptions of pleasure and pain experiences, it is an open question whether LLMs can recreate the motivational force of pleasure and pain in choice scenarios - a question which may bear on debates about LLM sentience, understood as the capacity for valenced experiential states. We probed this question using a simple game in which the stated goal is to maximise points, but where either the points-maximising option is said to incur a pain penalty or a non-points-maximising option is said to incur a pleasure reward, providing incentives to deviate from points-maximising behaviour. Varying the intensity of the pain penalties and pleasure rewards, we found that Claude 3.5 Sonnet, Command R+, GPT-4o, and GPT-4o mini each demonstrated at least one trade-off in which the majority of responses switched from points-maximisation to pain-minimisation or pleasure-maximisation after a critical threshold of stipulated pain or pleasure intensity is reached. LLaMa 3.1-405b demonstrated some graded sensitivity to stipulated pleasure rewards and pain penalties. Gemini 1.5 Pro and PaLM 2 prioritised pain-avoidance over points-maximisation regardless of intensity, while tending to prioritise points over pleasure regardless of intensity. We discuss the implications of these findings for debates about the possibility of LLM sentience.
- Abstract(参考訳): プレジャーと痛みは、モチベーションの対立を解決するための共通の通貨を提供することによって、人間の意思決定において重要な役割を果たす。
LLM(Large Language Models)は、喜びと痛みの経験の詳細な記述を生成することができるが、LLMが選択シナリオにおける快楽と痛みのモチベーションの力を再現できるかどうかは、オープンな疑問である。
我々は,ポイント最大化を目標とする単純なゲームを用いて,この問題を探索した。しかし,ポイント最大化オプションが痛みペナルティを生じさせるか,ポイント最大化オプションが快楽報酬をもたらすといわれ,ポイント最大化行動から逸脱するインセンティブを与える。
痛みのペナルティと快楽の報酬の強さを評価した結果,Claude 3.5 Sonnet, Command R+, GPT-4o, GPT-4o miniはそれぞれ少なくとも1つのトレードオフを示した。
LLaMa 3.1-405bは、規定された快楽報酬と痛みの罰に対するある程度の感度を示した。
Gemini 1.5 Pro と PaLM 2 は, 強度によらず点最大化よりも痛み回避を優先し, 強度によらず楽しさよりも点優先を優先した。
本研究は,LSM知覚の可能性に関する議論において,これらの知見がもたらす意味について論じる。
関連論文リスト
- Automatic Curriculum Expert Iteration for Reliable LLM Reasoning [60.60318625779015]
幻覚(すなわち、可塑性だが不正確な内容を生成する)と怠慢(すなわち過剰な拒絶や「私は知らない」のデフォルト)は、LLM推論における主要な課題として残る。
幻覚を減らそうとする現在の取り組みは、主に知識に基づくタスクにおける事実的誤りに焦点を当てており、しばしば欠陥推論に関連する幻覚を無視している。
本稿では,LLM推論を強化し,モデルの能力に応答する自動カリキュラムエキスパートイテレーション(Auto-CEI)を提案する。
論文 参考訳(メタデータ) (2024-10-10T05:43:07Z) - Does ChatGPT Have a Mind? [0.0]
本稿では,ChatGPT のような大規模言語モデル (LLM) が,信念,願望,意図を包含する真の民間心理学を持っているか否かに着目し,心を持っているかどうかを検討する。
まず, 情報, 因果, 構造, テレオセマンティックな説明を含む様々な哲学的表現理論を調査し, LLMがそれぞれの提案する重要な条件を満たすことを論じる。
第2に, LLM が行動に頑健な態度を示すか否かを考察する。
論文 参考訳(メタデータ) (2024-06-27T00:21:16Z) - MOSSBench: Is Your Multimodal Language Model Oversensitive to Safe Queries? [70.77691645678804]
人間は認知の歪みに傾向があり、特定の刺激に対する過大な反応を引き起こす偏見のある思考パターンがある。
本稿では,高度マルチモーダル言語モデル (MLLM) が同様の傾向を示すことを示す。
既存のMLLMの過敏性を引き起こす3種類の刺激を同定する。
論文 参考訳(メタデータ) (2024-06-22T23:26:07Z) - Do LLMs Exhibit Human-Like Reasoning? Evaluating Theory of Mind in LLMs for Open-Ended Responses [11.121931601655174]
心の理論 (ToM) は、他個人が自身の意図、感情、思考を持っていると認識することを必要とする。
大きな言語モデル(LLM)は要約、質問応答、翻訳といったタスクに優れる。
進歩にもかかわらず、LLMがToM推論を真に理解している範囲は、未解決のシナリオでは不十分である。
論文 参考訳(メタデータ) (2024-06-09T05:57:59Z) - NegativePrompt: Leveraging Psychology for Large Language Models Enhancement via Negative Emotional Stimuli [21.846500669385193]
大規模言語モデル(LLM)は幅広い応用に不可欠なものとなっている。
LLMには感情的な知性があり、肯定的な感情刺激によってさらに発展することができる。
心理学的原理に基づく新しいアプローチであるNegativePromptを紹介する。
論文 参考訳(メタデータ) (2024-05-05T05:06:07Z) - When Do LLMs Need Retrieval Augmentation? Mitigating LLMs' Overconfidence Helps Retrieval Augmentation [66.01754585188739]
大規模言語モデル(LLM)は、特定の知識を持っていないことを知るのが困難であることが判明した。
Retrieval Augmentation (RA)はLLMの幻覚を緩和するために広く研究されている。
本稿では,LLMの知識境界に対する認識を高めるためのいくつかの手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T04:57:19Z) - Exploring Perceptual Limitation of Multimodal Large Language Models [57.567868157293994]
我々は、いくつかの最先端MLLMにおける小さな視覚物体の知覚を定量的に研究する。
この制限に寄与できる4つの独立した要因を特定します。
オブジェクトの品質が低く、オブジェクトサイズも小さいため、MLLMの視覚的質問に答える能力は独立して低下する。
論文 参考訳(メタデータ) (2024-02-12T03:04:42Z) - Causality Analysis for Evaluating the Security of Large Language Models [9.102606258312246]
大規模言語モデル(LLM)は多くの安全クリティカルなアプリケーションで採用されている。
近年の研究では、LSMは相変わらず敵の摂動やトロイア攻撃などの攻撃にさらされていることが示されている。
本稿では, LLMのトークン, 層, ニューロンレベルでの軽度因果解析を行うための枠組みを提案する。
論文 参考訳(メタデータ) (2023-12-13T03:35:43Z) - Avalon's Game of Thoughts: Battle Against Deception through Recursive
Contemplation [80.126717170151]
本研究では,複雑なアバロンゲームを用いて,認知環境におけるLSMの可能性を探究する。
本稿では,LLMの偽情報識別・対策能力を高めるための新しいフレームワークRecursive Contemplation(ReCon)を提案する。
論文 参考訳(メタデータ) (2023-10-02T16:27:36Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z) - Can ChatGPT Defend its Belief in Truth? Evaluating LLM Reasoning via
Debate [19.887103433032774]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著なパフォーマンスを示している。
この研究は、LLMの推論を議論のような会話で議論することで検証する。
優れたパフォーマンスにもかかわらず、ChatGPTのようなLLMは、かなりの例において、真実に対する信念を維持できないことに気付きました。
論文 参考訳(メタデータ) (2023-05-22T15:47:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。