論文の概要: Towards Harmless Rawlsian Fairness Regardless of Demographic Prior
- arxiv url: http://arxiv.org/abs/2411.02467v2
- Date: Fri, 08 Nov 2024 07:47:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:06:35.617194
- Title: Towards Harmless Rawlsian Fairness Regardless of Demographic Prior
- Title(参考訳): デモグラフィーによらず無害なラウルシアンフェアネスを目指して
- Authors: Xuanqian Wang, Jing Li, Ivor W. Tsang, Yew-Soon Ong,
- Abstract要約: トレーニングセットに事前の人口統計が提供されない場合に,有効性を損なうことなく公平性を達成する可能性を探る。
本稿では,経験的損失の最適セット内でのトレーニング損失の分散を最小限に抑えるため,VFairという簡単な手法を提案する。
- 参考スコア(独自算出の注目度): 57.30787578956235
- License:
- Abstract: Due to privacy and security concerns, recent advancements in group fairness advocate for model training regardless of demographic information. However, most methods still require prior knowledge of demographics. In this study, we explore the potential for achieving fairness without compromising its utility when no prior demographics are provided to the training set, namely \emph{harmless Rawlsian fairness}. We ascertain that such a fairness requirement with no prior demographic information essential promotes training losses to exhibit a Dirac delta distribution. To this end, we propose a simple but effective method named VFair to minimize the variance of training losses inside the optimal set of empirical losses. This problem is then optimized by a tailored dynamic update approach that operates in both loss and gradient dimensions, directing the model towards relatively fairer solutions while preserving its intact utility. Our experimental findings indicate that regression tasks, which are relatively unexplored from literature, can achieve significant fairness improvement through VFair regardless of any prior, whereas classification tasks usually do not because of their quantized utility measurements. The implementation of our method is publicly available at \url{https://github.com/wxqpxw/VFair}.
- Abstract(参考訳): プライバシとセキュリティ上の懸念から、最近のグループフェアネスの進歩は、人口統計情報に関係なく、モデルトレーニングを提唱している。
しかし、ほとんどの手法は人口統計学の事前知識を必要とする。
本研究では,トレーニングセット,すなわち,emph{harmless Rawlsian fairness}に事前の人口統計が提供されない場合に,その実用性を損なうことなく公平性を達成する可能性を探究する。
事前の人口統計情報がないような公平性要件が、ディラックデルタ分布を示すためにトレーニング損失を促進することを確認した。
そこで本研究では,経験的損失の最適セット内でのトレーニング損失の分散を最小限に抑えるために,VFairというシンプルな,効果的な手法を提案する。
この問題は、損失次元と勾配次元の両方で動作する調整された動的更新アプローチによって最適化され、モデルを比較的公平な解へと誘導し、その無傷なユーティリティを保存する。
文献から比較的探索されていない回帰タスクは,VFairによって,前例によらず大きな公平性向上を達成できるのに対して,分類タスクは通常,定量化された実用性測定のためではない。
本手法の実装は \url{https://github.com/wxqpxw/VFair} で公開されている。
関連論文リスト
- Alpha and Prejudice: Improving $α$-sized Worst-case Fairness via Intrinsic Reweighting [34.954141077528334]
既成人口集団との最悪のフェアネスは、最悪の集団のモデルユーティリティを最大化することで、同等性を達成する。
近年の進歩は、最小分割比の低い境界を導入することで、この学習問題を再構築している。
論文 参考訳(メタデータ) (2024-11-05T13:04:05Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - Distributionally Robust Survival Analysis: A Novel Fairness Loss Without
Demographics [17.945141391585487]
本稿では,全てのサブ集団における最悪のエラーを最小限に抑える,生存率分析モデルの訓練方法を提案する。
このアプローチでは、センシティブな扱いをする人口統計情報を知らないトレーニング損失関数を使用する。
論文 参考訳(メタデータ) (2022-11-18T20:54:34Z) - Fairness Reprogramming [42.65700878967251]
モデル再プログラミング手法を取り入れたFairRe Programと呼ばれる新しい汎用フェアネス学習パラダイムを提案する。
具体的には、FairRe Programはモデルを変更することができず、フェアネストリガと呼ばれる一連の摂動を入力に追加するケースについて検討している。
我々は,固定MLモデルの出力予測において,公平性トリガが効果的に人口統計バイアスを曖昧にすることができることを理論的および実証的に示す。
論文 参考訳(メタデータ) (2022-09-21T09:37:00Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Optimising Equal Opportunity Fairness in Model Training [60.0947291284978]
既存のデバイアス法、例えば、敵の訓練や、表現から保護された情報を取り除くことは、バイアスを減らすことが示されている。
2つの新たな学習目標を提案し,2つの分類課題における高い性能を維持しつつ,バイアスの低減に有効であることを示す。
論文 参考訳(メタデータ) (2022-05-05T01:57:58Z) - KL Guided Domain Adaptation [88.19298405363452]
ドメイン適応は重要な問題であり、現実世界のアプリケーションにしばしば必要である。
ドメイン適応文学における一般的なアプローチは、ソースとターゲットドメインに同じ分布を持つ入力の表現を学ぶことである。
確率的表現ネットワークにより、KL項はミニバッチサンプルにより効率的に推定できることを示す。
論文 参考訳(メタデータ) (2021-06-14T22:24:23Z) - Fair Densities via Boosting the Sufficient Statistics of Exponential
Families [72.34223801798422]
フェアネスのためのデータ前処理にブースティングアルゴリズムを導入する。
私たちのアプローチは、最小限の公平性を確保しながら、より良いデータフィッティングへとシフトします。
実世界のデータに結果の質を示す実験結果が提示される。
論文 参考訳(メタデータ) (2020-12-01T00:49:17Z) - Mind the Trade-off: Debiasing NLU Models without Degrading the
In-distribution Performance [70.31427277842239]
信頼性正則化という新しいデバイアス化手法を導入する。
モデルがバイアスを悪用するのを防ぐと同時に、トレーニングのすべての例から学ぶのに十分なインセンティブを得られるようにします。
提案手法を3つのNLUタスクで評価し,前者とは対照的に,アウト・オブ・ディストリビューション・データセットの性能が向上することを示す。
論文 参考訳(メタデータ) (2020-05-01T11:22:55Z) - Recovering from Biased Data: Can Fairness Constraints Improve Accuracy? [11.435833538081557]
経験的リスク最小化(Empirical Risk Minimization, ERM)は、バイアスがあるだけでなく、真のデータ分布に最適な精度を持つ分類器を生成する。
公平性に制約されたERMによるこの問題の是正能力について検討する。
また、トレーニングデータの再重み付け、等化オッド、復号化パリティなど、他のリカバリ手法についても検討する。
論文 参考訳(メタデータ) (2019-12-02T22:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。