論文の概要: Fair Densities via Boosting the Sufficient Statistics of Exponential
Families
- arxiv url: http://arxiv.org/abs/2012.00188v4
- Date: Tue, 15 Aug 2023 10:02:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 17:56:05.266526
- Title: Fair Densities via Boosting the Sufficient Statistics of Exponential
Families
- Title(参考訳): 指数家族の十分な統計量による公正な密度向上
- Authors: Alexander Soen, Hisham Husain, Richard Nock
- Abstract要約: フェアネスのためのデータ前処理にブースティングアルゴリズムを導入する。
私たちのアプローチは、最小限の公平性を確保しながら、より良いデータフィッティングへとシフトします。
実世界のデータに結果の質を示す実験結果が提示される。
- 参考スコア(独自算出の注目度): 72.34223801798422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a boosting algorithm to pre-process data for fairness. Starting
from an initial fair but inaccurate distribution, our approach shifts towards
better data fitting while still ensuring a minimal fairness guarantee. To do
so, it learns the sufficient statistics of an exponential family with
boosting-compliant convergence. Importantly, we are able to theoretically prove
that the learned distribution will have a representation rate and statistical
rate data fairness guarantee. Unlike recent optimization based pre-processing
methods, our approach can be easily adapted for continuous domain features.
Furthermore, when the weak learners are specified to be decision trees, the
sufficient statistics of the learned distribution can be examined to provide
clues on sources of (un)fairness. Empirical results are present to display the
quality of result on real-world data.
- Abstract(参考訳): 公平な事前処理のためのブースティングアルゴリズムを提案する。
最初の公平だが不正確な分布から始めて、私たちのアプローチは、公平さの最小保証を確保しながら、より良いデータ適合へとシフトします。
そのため、指数列の十分な統計をブースティング対応の収束で学習する。
重要なのは、理論上、学習された分布が表現率と統計速度データの公平性を保証することを証明できることである。
最近の最適化に基づく事前処理手法とは異なり、我々のアプローチは連続的なドメイン機能に容易に適応できる。
さらに、弱い学習者が決定木であると特定された場合、学習された分布の十分な統計データを調べ、(不公平な)情報源について手がかりを与えることができる。
実世界のデータに結果の品質を示す実験結果が提示される。
関連論文リスト
- Targeted Learning for Data Fairness [52.59573714151884]
データ生成プロセス自体の公平性を評価することにより、公平性推論を拡張する。
我々は、人口統計学的平等、平等機会、条件付き相互情報から推定する。
提案手法を検証するため,いくつかのシミュレーションを行い,実データに適用する。
論文 参考訳(メタデータ) (2025-02-06T18:51:28Z) - Label Distribution Learning using the Squared Neural Family on the Probability Simplex [15.680835401104247]
本研究は,単純度上のラベル分布の確率分布を推定する。
モデル分布では,予測操作を行うことでラベル分布の予測を行うことができる。
ラベル分布に関するさらなる情報は、予測信頼性や不確実性など、推測することができる。
論文 参考訳(メタデータ) (2024-12-10T09:12:02Z) - Towards Harmless Rawlsian Fairness Regardless of Demographic Prior [57.30787578956235]
トレーニングセットに事前の人口統計が提供されない場合に,有効性を損なうことなく公平性を達成する可能性を探る。
本稿では,経験的損失の最適セット内でのトレーニング損失の分散を最小限に抑えるため,VFairという簡単な手法を提案する。
論文 参考訳(メタデータ) (2024-11-04T12:40:34Z) - Dr. FERMI: A Stochastic Distributionally Robust Fair Empirical Risk
Minimization Framework [12.734559823650887]
分散シフトが存在する場合、公正な機械学習モデルはテストデータに対して不公平に振る舞うことがある。
既存のアルゴリズムはデータへの完全なアクセスを必要とし、小さなバッチを使用する場合には使用できない。
本稿では,因果グラフの知識を必要としない収束保証付き分布安定度フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-20T23:25:28Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - How Robust is Your Fairness? Evaluating and Sustaining Fairness under
Unseen Distribution Shifts [107.72786199113183]
CUMA(CUrvature Matching)と呼ばれる新しいフェアネス学習手法を提案する。
CUMAは、未知の分布シフトを持つ未知の領域に一般化可能な頑健な公正性を達成する。
提案手法を3つの人気フェアネスデータセットで評価する。
論文 参考訳(メタデータ) (2022-07-04T02:37:50Z) - Fair Normalizing Flows [10.484851004093919]
FNF(Fair Normalizing Flows)は、学習された表現に対してより厳密な公正性を保証する新しい手法である。
FNFの主な利点は、その正確な確率計算により、潜在的に逆下流予測器の最大不公平性の保証が得られることである。
我々は,FNFが様々なグループフェアネスの概念を強制する上での有効性を実験的に示すとともに,解釈可能性や伝達学習といった他の魅力的な特性も示す。
論文 参考訳(メタデータ) (2021-06-10T17:35:59Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Fair Regression with Wasserstein Barycenters [39.818025466204055]
本稿では, 実数値関数を学習し, 実数値関数の制約を満たす問題について検討する。
予測された出力の分布は、センシティブな属性から独立することを要求する。
フェア回帰と最適輸送理論の関連性を確立し、最適なフェア予測器に対するクローズドフォーム表現を導出する。
論文 参考訳(メタデータ) (2020-06-12T16:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。