論文の概要: Pretrained transformer efficiently learns low-dimensional target functions in-context
- arxiv url: http://arxiv.org/abs/2411.02544v1
- Date: Mon, 04 Nov 2024 19:24:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:28.360888
- Title: Pretrained transformer efficiently learns low-dimensional target functions in-context
- Title(参考訳): 事前学習型変換器は文脈内低次元目標関数を効率的に学習する
- Authors: Kazusato Oko, Yujin Song, Taiji Suzuki, Denny Wu,
- Abstract要約: 勾配降下により最適化された非線形変換器は、ターゲット関数の分布の次元にのみ依存するプロンプト長を持つ、$f_*$ in-contextを学習する。
本結果は,事前学習した変換器の関数クラスの低次元構造への適応性を強調し,サンプル効率の良いICLを実現する。
- 参考スコア(独自算出の注目度): 40.77319247558742
- License:
- Abstract: Transformers can efficiently learn in-context from example demonstrations. Most existing theoretical analyses studied the in-context learning (ICL) ability of transformers for linear function classes, where it is typically shown that the minimizer of the pretraining loss implements one gradient descent step on the least squares objective. However, this simplified linear setting arguably does not demonstrate the statistical efficiency of ICL, since the pretrained transformer does not outperform directly solving linear regression on the test prompt. In this paper, we study ICL of a nonlinear function class via transformer with nonlinear MLP layer: given a class of \textit{single-index} target functions $f_*(\boldsymbol{x}) = \sigma_*(\langle\boldsymbol{x},\boldsymbol{\beta}\rangle)$, where the index features $\boldsymbol{\beta}\in\mathbb{R}^d$ are drawn from a $r$-dimensional subspace, we show that a nonlinear transformer optimized by gradient descent (with a pretraining sample complexity that depends on the \textit{information exponent} of the link functions $\sigma_*$) learns $f_*$ in-context with a prompt length that only depends on the dimension of the distribution of target functions $r$; in contrast, any algorithm that directly learns $f_*$ on test prompt yields a statistical complexity that scales with the ambient dimension $d$. Our result highlights the adaptivity of the pretrained transformer to low-dimensional structures of the function class, which enables sample-efficient ICL that outperforms estimators that only have access to the in-context data.
- Abstract(参考訳): トランスフォーマーは実例からコンテキスト内で効率的に学習することができる。
既存の理論分析では、線形関数クラスに対する変換器の文脈内学習(ICL)能力について研究しており、典型的には、事前学習損失の最小化は最小2乗の目的に対して1つの勾配降下ステップを実行する。
しかし、この単純化された線形設定は、事前訓練された変圧器がテストプロンプトの線形回帰を直接解くのに優れていないため、ICLの統計的効率は明らかに示さない。
本稿では, 非線形 MLP 層を持つ変換器を用いた非線形関数クラスの ICL について検討する: 対象関数のクラス $f_*(\boldsymbol{x}) = \sigma_*(\langle\boldsymbol{x},\boldsymbol{\beta}\rangle)$, ここでは,指標特徴 $\boldsymbol{\beta}\in\mathbb{R}^d$ が $r$-次元部分空間から引き出される場合, リンク関数 $sigma_*($f_*)$f_* は, 対象関数の分布にのみ依存する。
その結果,事前学習した変換器の関数クラスの低次元構造への適応性が強調され,テキスト内データにのみアクセス可能な推定器よりも優れたサンプル効率のICLが実現された。
関連論文リスト
- Unveiling Induction Heads: Provable Training Dynamics and Feature Learning in Transformers [54.20763128054692]
我々は,2層変換器が$n$-gramのマルコフ連鎖データ上でICLを実行するためにどのように訓練されているかを検討する。
クロスエントロピー ICL 損失に対する勾配流が極限モデルに収束することを証明する。
論文 参考訳(メタデータ) (2024-09-09T18:10:26Z) - On Mesa-Optimization in Autoregressively Trained Transformers: Emergence and Capability [34.43255978863601]
いくつかの説では、トランスフォーマーはオートレアトレーニング中にmesa-optimizerを学習する。
データモーメントに関する強い仮定は、学習されたメザ最適化器が実行可能な十分な必要条件であることを示す。
論文 参考訳(メタデータ) (2024-05-27T05:41:06Z) - Towards Better Understanding of In-Context Learning Ability from In-Context Uncertainty Quantification [7.869708570399577]
条件付き期待値 $mathbbE[Y|X]$ と条件付き分散 Var$(Y|X)$ の両方を予測する双目的予測タスクを考える。
理論的には、トレーニングされたトランスフォーマーがベイズ最適付近に到達し、トレーニング分布の情報の利用が示唆される。
論文 参考訳(メタデータ) (2024-05-24T00:08:55Z) - How do Transformers perform In-Context Autoregressive Learning? [76.18489638049545]
簡単な次のトークン予測タスクでTransformerモデルをトレーニングする。
トレーニングされたTransformerが、まず$W$ in-contextを学習し、次に予測マッピングを適用することで、次のトークンを予測する方法を示す。
論文 参考訳(メタデータ) (2024-02-08T16:24:44Z) - Globally Convergent Accelerated Algorithms for Multilinear Sparse
Logistic Regression with $\ell_0$-constraints [2.323238724742687]
多重線形ロジスティック回帰は多次元データ解析の強力なツールである。
本稿では,$ell_0$-MLSRを解くために,アクセラレーションされた近位置換最小値MLSRモデルを提案する。
また、APALM$+$が一階臨界点に大域収束し、クルディ・ロジャシエヴィチ性質を用いて収束を確立することも示している。
論文 参考訳(メタデータ) (2023-09-17T11:05:08Z) - Transformers as Support Vector Machines [54.642793677472724]
自己アテンションの最適化幾何と厳密なSVM問題との間には,形式的等価性を確立する。
勾配降下に最適化された1層変圧器の暗黙バイアスを特徴付ける。
これらの発見は、最適なトークンを分離し選択するSVMの階層としてのトランスフォーマーの解釈を刺激していると信じている。
論文 参考訳(メタデータ) (2023-08-31T17:57:50Z) - One Step of Gradient Descent is Provably the Optimal In-Context Learner
with One Layer of Linear Self-Attention [31.522320487765878]
最近の研究は、文脈内学習を実証的に分析している。
線形自己アテンションを持つ一層変圧器は勾配降下の一段階を実装することを学習する。
論文 参考訳(メタデータ) (2023-07-07T13:09:18Z) - Sample-Efficient Reinforcement Learning Is Feasible for Linearly
Realizable MDPs with Limited Revisiting [60.98700344526674]
線形関数表現のような低複雑度モデルがサンプル効率のよい強化学習を可能にする上で重要な役割を果たしている。
本稿では,オンライン/探索的な方法でサンプルを描画するが,制御不能な方法で以前の状態をバックトラックし,再訪することができる新しいサンプリングプロトコルについて検討する。
この設定に合わせたアルゴリズムを開発し、特徴次元、地平線、逆の準最適ギャップと実際にスケールするサンプル複雑性を実現するが、状態/作用空間のサイズではない。
論文 参考訳(メタデータ) (2021-05-17T17:22:07Z) - Learning to extrapolate using continued fractions: Predicting the
critical temperature of superconductor materials [5.905364646955811]
人工知能(AI)と機械学習(ML)の分野では、未知のターゲット関数 $y=f(mathbfx)$ の近似が共通の目的である。
トレーニングセットとして$S$を参照し、新しいインスタンス$mathbfx$に対して、このターゲット関数を効果的に近似できる低複雑さの数学的モデルを特定することを目的としている。
論文 参考訳(メタデータ) (2020-11-27T04:57:40Z) - Piecewise Linear Regression via a Difference of Convex Functions [50.89452535187813]
本稿では,データに対する凸関数(DC関数)の差を利用した線形回帰手法を提案する。
実際に実装可能であることを示すとともに,実世界のデータセット上で既存の回帰/分類手法に匹敵する性能を有することを実証的に検証した。
論文 参考訳(メタデータ) (2020-07-05T18:58:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。