Efficacy of EPSS in High Severity CVEs found in KEV
- URL: http://arxiv.org/abs/2411.02618v1
- Date: Mon, 04 Nov 2024 21:12:58 GMT
- Title: Efficacy of EPSS in High Severity CVEs found in KEV
- Authors: Rianna Parla,
- Abstract summary: The Exploit Prediction Scoring System (EPSS) is designed to assess the probability of a vulnerability being exploited in the next 30 days.
This study evaluates EPSS's ability to predict exploitation before vulnerabilities are actively compromised.
- Score: 0.0
- License:
- Abstract: The Exploit Prediction Scoring System (EPSS) is designed to assess the probability of a vulnerability being exploited in the next 30 days relative to other vulnerabilities. The latest version, based on a research paper published in arXiv, assists defenders in deciding which vulnerabilities to prioritize for remediation. This study evaluates EPSS's ability to predict exploitation before vulnerabilities are actively compromised, focusing on high severity CVEs that are known to have been exploited and included in the CISA KEV catalog. By analyzing EPSS score history, the availability and simplicity of exploits, the system's purpose, its value as a target for Threat Actors (TAs), this paper examines EPSS's potential and identifies areas for improvement.
Related papers
- Insights and Current Gaps in Open-Source LLM Vulnerability Scanners: A Comparative Analysis [1.5149711185416004]
This report presents a comparative analysis of open-source vulnerability scanners for conversational large language models (LLMs)
Our study evaluates prominent scanners - Garak, Giskard, PyRIT, and CyberSecEval - that adapt red-teaming practices to expose vulnerabilities.
arXiv Detail & Related papers (2024-10-21T21:36:03Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) has been promoted as a tool to increase transparency and verifiability in software composition.
Current SBOM generation tools often suffer from inaccuracies in identifying components and dependencies.
We propose PIP-sbom, a novel pip-inspired solution that addresses their shortcomings.
arXiv Detail & Related papers (2024-09-10T10:12:37Z) - The Pitfalls and Promise of Conformal Inference Under Adversarial Attacks [90.52808174102157]
In safety-critical applications such as medical imaging and autonomous driving, it is imperative to maintain both high adversarial robustness to protect against potential adversarial attacks.
A notable knowledge gap remains concerning the uncertainty inherent in adversarially trained models.
This study investigates the uncertainty of deep learning models by examining the performance of conformal prediction (CP) in the context of standard adversarial attacks.
arXiv Detail & Related papers (2024-05-14T18:05:19Z) - SecScore: Enhancing the CVSS Threat Metric Group with Empirical Evidences [0.0]
One of the most widely used vulnerability scoring systems (CVSS) does not address the increasing likelihood of emerging an exploit code.
We present SecScore, an innovative vulnerability severity score that enhances CVSS Threat metric group.
arXiv Detail & Related papers (2024-05-14T12:25:55Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
This research introduces graph analysis methods and a modified Graph Attention Convolutional Neural Network (GAT) model.
We analyze control flow graphs to profile breaking changes in applications occurring from dependency upgrades intended to remediate vulnerabilities.
Results demonstrate the effectiveness of the enhanced GAT model in offering nuanced insights into the relational dynamics of code vulnerabilities.
arXiv Detail & Related papers (2024-03-08T02:01:47Z) - Unveiling Hidden Links Between Unseen Security Entities [3.7138962865789353]
VulnScopper is an innovative approach that utilizes multi-modal representation learning, combining Knowledge Graphs (KG) and Natural Processing (NLP)
We evaluate VulnScopper on two major security datasets, the National Vulnerability Database (NVD) and the Red Hat CVE database.
Our results show that VulnScopper outperforms existing methods, achieving up to 78% Hits@10 accuracy in linking CVEs to Common Vulnerabilities and Exposures (CWEs), and Common Platform Languageions (CPEs)
arXiv Detail & Related papers (2024-03-04T13:14:39Z) - Unveiling Vulnerabilities of Contrastive Recommender Systems to Poisoning Attacks [48.911832772464145]
Contrastive learning (CL) has recently gained prominence in the domain of recommender systems.
This paper identifies a vulnerability of CL-based recommender systems that they are more susceptible to poisoning attacks aiming to promote individual items.
arXiv Detail & Related papers (2023-11-30T04:25:28Z) - Automated CVE Analysis for Threat Prioritization and Impact Prediction [4.540236408836132]
We introduce our novel predictive model and tool (called CVEDrill) which revolutionizes CVE analysis and threat prioritization.
CVEDrill accurately estimates the Common Vulnerability Scoring System (CVSS) vector for precise threat mitigation and priority ranking.
It seamlessly automates the classification of CVEs into the appropriate Common Weaknession (CWE) hierarchy classes.
arXiv Detail & Related papers (2023-09-06T14:34:03Z) - CVE-driven Attack Technique Prediction with Semantic Information
Extraction and a Domain-specific Language Model [2.1756081703276]
The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation.
TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions.
The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques.
arXiv Detail & Related papers (2023-09-06T06:53:45Z) - Free Lunch for Generating Effective Outlier Supervision [46.37464572099351]
We propose an ultra-effective method to generate near-realistic outlier supervision.
Our proposed textttBayesAug significantly reduces the false positive rate over 12.50% compared with the previous schemes.
arXiv Detail & Related papers (2023-01-17T01:46:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.