論文の概要: Fair and Welfare-Efficient Constrained Multi-matchings under Uncertainty
- arxiv url: http://arxiv.org/abs/2411.02654v1
- Date: Mon, 04 Nov 2024 22:42:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:58:32.530554
- Title: Fair and Welfare-Efficient Constrained Multi-matchings under Uncertainty
- Title(参考訳): 不確実性下における公正・福祉性制約型マルチマッチング
- Authors: Elita Lobo, Justin Payan, Cyrus Cousins, Yair Zick,
- Abstract要約: 我々は、市場デザイナーがグループフェアネスを維持しながら全体的な福祉を最適化する制約された資源の公平な配分について研究する。
多くの大規模環境では、ユーティリティは事前には知られていないが、アロケーションを実現した後で観察される。
本稿では、これらのトレードオフを2つのパラダイムで論じる。
- 参考スコア(独自算出の注目度): 17.364297444721057
- License:
- Abstract: We study fair allocation of constrained resources, where a market designer optimizes overall welfare while maintaining group fairness. In many large-scale settings, utilities are not known in advance, but are instead observed after realizing the allocation. We therefore estimate agent utilities using machine learning. Optimizing over estimates requires trading-off between mean utilities and their predictive variances. We discuss these trade-offs under two paradigms for preference modeling -- in the stochastic optimization regime, the market designer has access to a probability distribution over utilities, and in the robust optimization regime they have access to an uncertainty set containing the true utilities with high probability. We discuss utilitarian and egalitarian welfare objectives, and we explore how to optimize for them under stochastic and robust paradigms. We demonstrate the efficacy of our approaches on three publicly available conference reviewer assignment datasets. The approaches presented enable scalable constrained resource allocation under uncertainty for many combinations of objectives and preference models.
- Abstract(参考訳): 我々は、市場デザイナーがグループフェアネスを維持しながら全体的な福祉を最適化する制約された資源の公平な配分について研究する。
多くの大規模環境では、ユーティリティは事前には知られていないが、アロケーションを実現した後で観察される。
そこで機械学習を用いてエージェントユーティリティを推定する。
見積もりを最適化するには、平均的なユーティリティと予測的分散の間のトレードオフが必要である。
確率的最適化体制では、市場設計者はユーティリティよりも確率分布にアクセスでき、ロバストな最適化体制では、真のユーティリティを含む不確実性集合に高い確率でアクセスすることができる。
実用的・平等的福祉の目的について議論し、確率的・堅牢なパラダイムの下でそれらの最適化方法について検討する。
我々は,3つの公開カンファレンスレビュアー・アサイン・データセットに対するアプローチの有効性を実証する。
提案したアプローチは、目的と選好モデルの多くの組み合わせに対する不確実性の下で、スケーラブルな制約付きリソース割り当てを可能にする。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - Interactive Learning with Pricing for Optimal and Stable Allocations in
Markets [12.580391999838128]
大規模オンラインレコメンデーションシステムは、ユーザのフィードバックから好みを学習しながら、競合するユーザ間で限られた数のアイテムの割り当てを容易にする必要がある。
我々のフレームワークは、報酬を楽観的に最大化するアロケーションを探索することで、レコメンデーションの品質を高める。
不安定性を最小限に抑えるため、推薦されたアロケーションから逸脱するユーザのインセンティブを測定するため、アルゴリズムはWalrasian equilibriaから派生したスキームに基づいてアイテムを価格設定する。
本手法は, 帯域幅, 最適資源配分, 協調フィルタリングの手法を統合し, サブリニアな社会福祉の後悔と, サブリニアな不安定性を実現するアルゴリズムを得るための最初の手法である。
論文 参考訳(メタデータ) (2022-12-13T20:33:54Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - Wasserstein Robust Support Vector Machines with Fairness Constraints [15.004754864933705]
我々は分布の不確かさをモデル化するために経験的分布を中心とするタイプ$infty$ wasserstein ambiguityセットを用いる。
提案手法は,予測精度の損なうことなく,公平性を向上することを示す。
論文 参考訳(メタデータ) (2021-03-11T17:53:54Z) - Multi-Stage Decentralized Matching Markets: Uncertain Preferences and
Strategic Behaviors [91.3755431537592]
本稿では、現実世界のマッチング市場で最適な戦略を学ぶためのフレームワークを開発する。
我々は,不確実性レベルが特徴の福祉対フェアネストレードオフが存在することを示す。
シングルステージマッチングと比較して、マルチステージマッチングで参加者がより良くなることを証明します。
論文 参考訳(メタデータ) (2021-02-13T19:25:52Z) - Learning Strategies in Decentralized Matching Markets under Uncertain
Preferences [91.3755431537592]
エージェントの選好が不明な場合,共有資源の不足の設定における意思決定の問題について検討する。
我々のアプローチは、再生されたカーネルヒルベルト空間における好みの表現に基づいている。
エージェントの期待した利益を最大化する最適な戦略を導出する。
論文 参考訳(メタデータ) (2020-10-29T03:08:22Z) - HyperFair: A Soft Approach to Integrating Fairness Criteria [17.770533330914102]
我々は,ハイブリッドレコメンデータシステムにおいて,ソフトフェアネス制約を強制するフレームワークであるHyperFairを紹介する。
まず,確率的ソフトロジックレコメンデータシステムテンプレートの拡張として提案する手法を提案する。
複数のHyperFairハイブリッドレコメンデータを実装することで,私たちのアプローチを実証的に検証し,最先端のフェアレコメンデータと比較する。
論文 参考訳(メタデータ) (2020-09-05T05:00:06Z) - Accuracy and Fairness Trade-offs in Machine Learning: A Stochastic
Multi-Objective Approach [0.0]
機械学習を実生活の意思決定システムに適用すると、予測結果は機密性の高い属性を持つ人々に対して差別され、不公平になる可能性がある。
公正機械学習における一般的な戦略は、予測損失の最小化において、制約や罰則として公正さを含めることである。
本稿では,多目的最適化問題を定式化して公平性を扱うための新しい手法を提案する。
論文 参考訳(メタデータ) (2020-08-03T18:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。