論文の概要: Wasserstein Robust Support Vector Machines with Fairness Constraints
- arxiv url: http://arxiv.org/abs/2103.06828v1
- Date: Thu, 11 Mar 2021 17:53:54 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-13 07:37:06.077467
- Title: Wasserstein Robust Support Vector Machines with Fairness Constraints
- Title(参考訳): Wasserstein Robustがベクターマシンを公平性制約付きでサポート
- Authors: Yijie Wang, Viet Anh Nguyen, Grani A. Hanasusanto
- Abstract要約: 我々は分布の不確かさをモデル化するために経験的分布を中心とするタイプ$infty$ wasserstein ambiguityセットを用いる。
提案手法は,予測精度の損なうことなく,公平性を向上することを示す。
- 参考スコア(独自算出の注目度): 15.004754864933705
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a distributionally robust support vector machine with a fairness
constraint that encourages the classifier to be fair in view of the equality of
opportunity criterion. We use a type-$\infty$ Wasserstein ambiguity set
centered at the empirical distribution to model distributional uncertainty and
derive an exact reformulation for worst-case unfairness measure. We establish
that the model is equivalent to a mixed-binary optimization problem, which can
be solved by standard off-the-shelf solvers. We further prove that the
expectation of the hinge loss objective function constitutes an upper bound on
the misclassification probability. Finally, we numerically demonstrate that our
proposed approach improves fairness with negligible loss of predictive
accuracy.
- Abstract(参考訳): 本稿では,機会基準の平等の観点から分類器が公平であることを促す公平性制約のある分布的ロバストなサポートベクターマシンを提案する。
実験分布を中心にしたタイプ=$\infty$ワッサーシュタイン曖昧性集合を用いて分布の不確かさをモデル化し、最悪の場合の不公平性尺度の正確な修正を導出する。
標準オフザシェルソルバで解くことができる混合バイナリ最適化問題と同等であることを定式化します。
さらに,ヒンジ損失対象関数の期待値が誤分類確率の上界を構成することを証明した。
最後に,提案手法が予測精度を損なうことなく公平性を向上させることを数値的に示す。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - An Inexact Halpern Iteration with Application to Distributionally Robust
Optimization [9.529117276663431]
決定論的および決定論的収束設定におけるスキームの不正確な変種について検討する。
不正確なスキームを適切に選択することにより、(予想される)剰余ノルムの点において$O(k-1)収束率を許容することを示す。
論文 参考訳(メタデータ) (2024-02-08T20:12:47Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
画像の離散表現への量子化は、統合生成モデリングにおける根本的な問題である。
決定論的量子化は、厳しいコードブックの崩壊と推論段階の誤調整に悩まされ、一方、量子化は、コードブックの利用率の低下と再構築の目的に悩まされる。
本稿では、2つの視点から正規化を適用することにより、上記の問題を効果的に緩和できる正規化ベクトル量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-11T15:20:54Z) - Fairness in Matching under Uncertainty [78.39459690570531]
アルゴリズム的な二面市場は、こうした設定における公平性の問題に注意を向けている。
我々は、利益の不確実性を尊重する両面の市場設定において、個々人の公正性の概念を公理化する。
そこで我々は,配当よりも公平なユーティリティ最大化分布を求めるために,線形プログラミングフレームワークを設計する。
論文 参考訳(メタデータ) (2023-02-08T00:30:32Z) - A Short and General Duality Proof for Wasserstein Distributionally Robust Optimization [11.034091190797671]
本稿では, 関東ロビッチ輸送コスト, 測定可能な損失関数, および有意な確率分布を抑えるような, 分散的ロバストな最適化のための一般化双対性結果を提案する。
我々は、ある可測射影と弱い可測選択条件が満たされている場合にのみ、交換可能性原理が成立することを示した。
論文 参考訳(メタデータ) (2022-04-30T22:49:01Z) - Robustness and Accuracy Could Be Reconcilable by (Proper) Definition [109.62614226793833]
強靭性と精度のトレードオフは、敵文学において広く研究されている。
局所的不変性の帰納的バイアスを課す不適切に定義された頑健な誤差に由来する可能性がある。
定義上、SCOREは、最悪のケースの不確実性に対処しながら、堅牢性と正確性の間の和解を促進する。
論文 参考訳(メタデータ) (2022-02-21T10:36:09Z) - Beyond Individual and Group Fairness [90.4666341812857]
本稿では,不公平な不公平な苦情に導かれる公平さの新しいデータ駆動モデルを提案する。
我々のモデルは、複数のフェアネス基準をサポートし、それらの潜在的な不整合を考慮に入れている。
論文 参考訳(メタデータ) (2020-08-21T14:14:44Z) - A Distributionally Robust Approach to Fair Classification [17.759493152879013]
本研究では、性別や民族などのセンシティブな属性に対する差別を防止する不公平なペナルティを持つロジスティックなロジスティック回帰モデルを提案する。
このモデルは、トレーニングデータ上の経験的分布を中心とするワッサーシュタイン球が分布の不確かさのモデル化に使用される場合、トラクタブル凸最適化問題と等価である。
得られた分類器は, 合成データセットと実データセットの両方において, 予測精度の限界損失による公平性の向上を実証する。
論文 参考訳(メタデータ) (2020-07-18T22:34:48Z) - Fair Regression with Wasserstein Barycenters [39.818025466204055]
本稿では, 実数値関数を学習し, 実数値関数の制約を満たす問題について検討する。
予測された出力の分布は、センシティブな属性から独立することを要求する。
フェア回帰と最適輸送理論の関連性を確立し、最適なフェア予測器に対するクローズドフォーム表現を導出する。
論文 参考訳(メタデータ) (2020-06-12T16:10:41Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
確率分布が未知な分布の不確実性の下でBQOについて検討する。
標準的なBQOアプローチは、固定されたサンプル集合が与えられたときの真の期待目標のモンテカルロ推定を最大化する。
この目的のために,新しい後方サンプリングに基づくアルゴリズム,すなわち分布的に堅牢なBQO(DRBQO)を提案する。
論文 参考訳(メタデータ) (2020-01-19T12:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。