Point processes with event time uncertainty
- URL: http://arxiv.org/abs/2411.02694v1
- Date: Tue, 05 Nov 2024 00:46:09 GMT
- Title: Point processes with event time uncertainty
- Authors: Xiuyuan Cheng, Tingnan Gong, Yao Xie,
- Abstract summary: We introduce a framework to model time-uncertain point processes possibly on a network.
We experimentally show that the proposed approach outperforms previous General Linear model (GLM) baselines on simulated and real data.
- Score: 16.64005584511643
- License:
- Abstract: Point processes are widely used statistical models for uncovering the temporal patterns in dependent event data. In many applications, the event time cannot be observed exactly, calling for the incorporation of time uncertainty into the modeling of point process data. In this work, we introduce a framework to model time-uncertain point processes possibly on a network. We start by deriving the formulation in the continuous-time setting under a few assumptions motivated by application scenarios. After imposing a time grid, we obtain a discrete-time model that facilitates inference and can be computed by first-order optimization methods such as Gradient Descent or Variation inequality (VI) using batch-based Stochastic Gradient Descent (SGD). The parameter recovery guarantee is proved for VI inference at an $O(1/k)$ convergence rate using $k$ SGD steps. Our framework handles non-stationary processes by modeling the inference kernel as a matrix (or tensor on a network) and it covers the stationary process, such as the classical Hawkes process, as a special case. We experimentally show that the proposed approach outperforms previous General Linear model (GLM) baselines on simulated and real data and reveals meaningful causal relations on a Sepsis-associated Derangements dataset.
Related papers
- A Bayesian Mixture Model of Temporal Point Processes with Determinantal Point Process Prior [21.23523473330637]
Asynchronous event sequence clustering aims to group similar event sequences in an unsupervised manner.
Our work provides a flexible learning framework for event sequence clustering, enabling automatic identification of the potential number of clusters.
It is applicable to a wide range of parametric temporal point processes, including neural network-based models.
arXiv Detail & Related papers (2024-11-07T03:21:30Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Probabilistic Modeling for Sequences of Sets in Continuous-Time [14.423456635520084]
We develop a general framework for modeling set-valued data in continuous-time.
We also develop inference methods that can use such models to answer probabilistic queries.
arXiv Detail & Related papers (2023-12-22T20:16:10Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Online Time Series Anomaly Detection with State Space Gaussian Processes [12.483273106706623]
R-ssGPFA is an unsupervised online anomaly detection model for uni- and multivariate time series.
For high-dimensional time series, we propose an extension of Gaussian process factor analysis to identify the common latent processes of the time series.
Our model's robustness is improved by using a simple to skip Kalman updates when encountering anomalous observations.
arXiv Detail & Related papers (2022-01-18T06:43:32Z) - Improved Prediction and Network Estimation Using the Monotone Single
Index Multi-variate Autoregressive Model [34.529641317832024]
We develop a semi-parametric approach based on the monotone single-index multi-variate autoregressive model (SIMAM)
We provide theoretical guarantees for dependent data and an alternating projected gradient descent algorithm.
We demonstrate the superior performance both on simulated data and two real data examples.
arXiv Detail & Related papers (2021-06-28T12:32:29Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
Event datasets are sequences of events of various types occurring irregularly over the time-line.
We propose a non-parametric deep neural network approach in order to estimate the underlying intensity functions.
arXiv Detail & Related papers (2020-02-21T23:10:50Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.