論文の概要: Language Models and Cycle Consistency for Self-Reflective Machine Translation
- arxiv url: http://arxiv.org/abs/2411.02791v1
- Date: Tue, 05 Nov 2024 04:01:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:02:22.678987
- Title: Language Models and Cycle Consistency for Self-Reflective Machine Translation
- Title(参考訳): 自己表現型機械翻訳のための言語モデルとサイクル整合性
- Authors: Jianqiao Wangni,
- Abstract要約: 我々は、ソース言語Aからターゲット言語Bへの複数の翻訳候補を生成し、その後、これらの候補を元の言語Aに翻訳する。
トークンレベルの精度や精度などの指標を用いて、原文と裏文の周期一貫性を評価することにより、言語Bの翻訳品質を暗黙的に推定する。
各原文に対して、翻訳候補を、原文と最適なサイクル整合性で同定し、最終回答とする。
- 参考スコア(独自算出の注目度): 1.79487674052027
- License:
- Abstract: This paper introduces a novel framework that leverages large language models (LLMs) for machine translation (MT). We start with one conjecture: an ideal translation should contain complete and accurate information for a strong enough LLM to recover the original sentence. We generate multiple translation candidates from a source language A to a target language B, and subsequently translate these candidates back to the original language A. By evaluating the cycle consistency between the original and back-translated sentences using metrics such as token-level precision and accuracy, we implicitly estimate the translation quality in language B, without knowing its ground-truth. This also helps to evaluate the LLM translation capability, only with monolingual corpora. For each source sentence, we identify the translation candidate with optimal cycle consistency with the original sentence as the final answer. Our experiments demonstrate that larger LLMs, or the same LLM with more forward passes during inference, exhibit increased cycle consistency, aligning with the LLM model size scaling law and test-time computation scaling law. This work provide methods for, 1) to implicitly evaluate translation quality of a sentence in the target language, 2), to evaluate capability of LLM for any-to-any-language translation, and 3), how to generate a better translation for a specific LLM.
- Abstract(参考訳): 本稿では,機械翻訳(MT)に大規模言語モデル(LLM)を利用する新しいフレームワークを提案する。
理想的な翻訳は、原文を復元するのに十分な強いLLMのための完全かつ正確な情報を含むべきである。
我々は、ソース言語Aから対象言語Bへの複数の翻訳候補を生成し、その後、これらの候補を元の言語Aに翻訳する。トークンレベルの精度や精度などの指標を用いて、原文と裏文のサイクル一貫性を評価することにより、その基盤構造を知らずに、暗黙的に言語Bの翻訳品質を推定する。
これはまた、モノリンガルコーパスのみでLLM翻訳能力を評価するのにも役立ちます。
各原文に対して、翻訳候補を、原文と最適なサイクル整合性で同定し、最終回答とする。
実験により,LLMモデルスケール法則やテスト時間計算スケーリング法則と整合して,より大きなLLM,あるいはより前方通過の少ないLLMがサイクル整合性を示した。
本研究は,1) 対象言語における文の翻訳品質を暗黙的に評価する方法,2) 任意の言語翻訳におけるLLMの能力を評価する方法,3) 特定のLLMに対してより優れた翻訳を生成する方法を提供する。
関連論文リスト
- What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - Towards Translating Real-World Code with LLMs: A Study of Translating to Rust [13.743967357458287]
大規模言語モデル(LLM)は、ほとんどのプログラミング言語でコードを記述する能力のため、コード翻訳において有望であることを示す。
実世界のオープンソースプロジェクトから抽出したコードについて検討する。
FLOURINEは、差分ファジィを使用して、Rust翻訳が元のソースプログラムと同等のI/Oかどうかをチェックする、エンドツーエンドのコード変換ツールである。
論文 参考訳(メタデータ) (2024-05-19T10:54:03Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement [26.26493253161022]
大規模言語モデル(LLM)は機械翻訳(MT)において印象的な結果を得た
我々は,体系的LLMに基づく自己精製翻訳フレームワーク,textbfTEaRを紹介する。
論文 参考訳(メタデータ) (2024-02-26T07:58:12Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z) - Understanding Translationese in Cross-Lingual Summarization [106.69566000567598]
言語間要約(MS)は、異なる対象言語で簡潔な要約を生成することを目的としている。
大規模なCLSデータを集めるために、既存のデータセットは通常、それらの生成に翻訳を伴います。
本稿では、まず、CLSデータセット構築の異なるアプローチが、異なるレベルの翻訳に結びつくことを確認する。
論文 参考訳(メタデータ) (2022-12-14T13:41:49Z) - Language Model Prior for Low-Resource Neural Machine Translation [85.55729693003829]
ニューラル翻訳モデル (TM) において, LM を事前に組み込む新しい手法を提案する。
正規化項を追加し、TMの出力分布をLMの下で予測可能とする。
2つの低リソース機械翻訳データセットの結果は、限られたモノリンガルデータであっても明らかな改善を示している。
論文 参考訳(メタデータ) (2020-04-30T16:29:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。