論文の概要: Transformer-Based Fault-Tolerant Control for Fixed-Wing UAVs Using Knowledge Distillation and In-Context Adaptation
- arxiv url: http://arxiv.org/abs/2411.02975v1
- Date: Tue, 05 Nov 2024 10:24:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:58:07.222476
- Title: Transformer-Based Fault-Tolerant Control for Fixed-Wing UAVs Using Knowledge Distillation and In-Context Adaptation
- Title(参考訳): 知識蒸留と文脈適応を用いた固定翼UAVの変圧器型耐故障制御
- Authors: Francisco Giral, Ignacio Gómez, Ricardo Vinuesa, Soledad Le-Clainche,
- Abstract要約: 本研究では, 固定翼無人航空機(UAV)の耐故障性制御のための変圧器を用いたアプローチを提案する。
提案手法は,変換器の学習機構と注意機構を用いて,外部ループ参照値を制御コマンドに直接マッピングする。
実験結果から, トランスフォーマーをベースとした制御器は, 業界標準SFSおよび最先端強化学習法(RL)よりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 3.1498833540989413
- License:
- Abstract: This study presents a transformer-based approach for fault-tolerant control in fixed-wing Unmanned Aerial Vehicles (UAVs), designed to adapt in real time to dynamic changes caused by structural damage or actuator failures. Unlike traditional Flight Control Systems (FCSs) that rely on classical control theory and struggle under severe alterations in dynamics, our method directly maps outer-loop reference values -- altitude, heading, and airspeed -- into control commands using the in-context learning and attention mechanisms of transformers, thus bypassing inner-loop controllers and fault-detection layers. Employing a teacher-student knowledge distillation framework, the proposed approach trains a student agent with partial observations by transferring knowledge from a privileged expert agent with full observability, enabling robust performance across diverse failure scenarios. Experimental results demonstrate that our transformer-based controller outperforms industry-standard FCS and state-of-the-art reinforcement learning (RL) methods, maintaining high tracking accuracy and stability in nominal conditions and extreme failure cases, highlighting its potential for enhancing UAV operational safety and reliability.
- Abstract(参考訳): 本研究では, 固定翼無人航空機(UAV)における耐故障性制御のためのトランスフォーマー方式を提案する。
従来の制御理論に依存する従来の飛行制御システム(FCS)とは異なり、我々の手法は外ループ基準値(高度、進路、飛行速度)を直接制御コマンドにマッピングし、インナーループ制御器と故障検出器をバイパスする。
提案手法は,教師による知識蒸留の枠組みを用いて,有能な専門家エージェントから知識をフルオブザーバビリティで伝達することにより,学生エージェントに部分的な観察を訓練し,多様な障害シナリオにおける堅牢なパフォーマンスを実現する。
実験により, トランスフォーマーを用いた制御器は, 業界標準のFCS法と最先端強化学習法(RL)法より優れ, 名目条件や極端な故障事例の追跡精度と安定性を維持し, UAVの安全性と信頼性を高める可能性を強調した。
関連論文リスト
- Model-Free versus Model-Based Reinforcement Learning for Fixed-Wing UAV
Attitude Control Under Varying Wind Conditions [1.474723404975345]
本稿では、PIDを基準点として、固定翼無人航空機の姿勢制御のためのモデルフリーおよびモデルベース強化学習の性能を評価し、比較する。
その結果, 時間差モデル予測制御は, PIDコントローラと他のモデルレス強化学習法の両方で, 精度と頑健さの点で優れていた。
論文 参考訳(メタデータ) (2024-09-26T14:47:14Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - DATT: Deep Adaptive Trajectory Tracking for Quadrotor Control [62.24301794794304]
Deep Adaptive Trajectory Tracking (DATT)は、学習に基づくアプローチであり、現実世界の大きな乱れの存在下で、任意の、潜在的に実現不可能な軌跡を正確に追跡することができる。
DATTは、非定常風場における可溶性および非実用性の両方の軌道に対して、競争適応性非線形およびモデル予測コントローラを著しく上回っている。
適応非線形モデル予測制御ベースラインの1/4未満である3.2ms未満の推論時間で、効率的にオンラインで実行することができる。
論文 参考訳(メタデータ) (2023-10-13T12:22:31Z) - A Reinforcement Learning Approach for Robust Supervisory Control of UAVs
Under Disturbances [1.8799681615947088]
無人航空機(UAV)の監視強化学習制御手法を提案する。
我々は,既存の組込み制御と交差する監視制御アーキテクチャを定式化し,悪風の形での環境障害に対する堅牢性を示す。
論文 参考訳(メタデータ) (2023-05-21T19:00:06Z) - Improving the Performance of Robust Control through Event-Triggered
Learning [74.57758188038375]
LQR問題における不確実性に直面していつ学習するかを決定するイベントトリガー学習アルゴリズムを提案する。
本研究では,ロバストな制御器ベースライン上での性能向上を数値例で示す。
論文 参考訳(メタデータ) (2022-07-28T17:36:37Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Interpretable Stochastic Model Predictive Control using Distributional
Reinforced Estimation for Quadrotor Tracking Systems [0.8411385346896411]
本研究では,動的・複雑環境下での自律的四角形ナビゲーションのためのトラジェクトリトラッカーを提案する。
提案フレームワークは,未知の空力効果に対する分散強化学習推定器をモデル予測制御器に統合する。
我々は,未知かつ多様な空気力を用いて,累積追従誤差を少なくとも66%改善するシステムを実証した。
論文 参考訳(メタデータ) (2022-05-14T23:27:38Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
本稿では,ディープラーニングを通じて事前学習した表現を組み込むことで,オンラインでの迅速な適応を可能にする学習ベースのアプローチを提案する。
Neural-Flyは、最先端の非線形かつ適応的なコントローラよりもかなり少ないトラッキングエラーで正確な飛行制御を実現する。
論文 参考訳(メタデータ) (2022-05-13T21:55:28Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
DRLは、元の非線形力学を直接操作する固定翼UAVの姿勢制御をうまく学べることを示す。
我々は,UAVで学習したコントローラを飛行試験で展開し,最先端のArduPlane比例積分微分(PID)姿勢制御と同等の性能を示す。
論文 参考訳(メタデータ) (2021-11-07T19:07:46Z) - Adaptive control of a mechatronic system using constrained residual
reinforcement learning [0.0]
本研究では,不確実な環境下での従来のコントローラの性能向上のための,シンプルで実用的で直感的な手法を提案する。
本手法は, 産業用モーションコントロールにおける従来の制御器が, 異なる動作条件に対応するために適応性よりも頑健であることを示す。
論文 参考訳(メタデータ) (2021-10-06T08:13:05Z) - Understanding the Difficulty of Training Transformers [120.99980924577787]
バランスの取れない勾配がトレーニングの不安定性の根本原因ではないことを示す。
我々は,早期段階のトレーニングを安定させ,後期段階においてその潜在能力を最大限に活用するためのアドミンを提案する。
論文 参考訳(メタデータ) (2020-04-17T13:59:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。