論文の概要: Confidence Calibration of Classifiers with Many Classes
- arxiv url: http://arxiv.org/abs/2411.02988v1
- Date: Tue, 05 Nov 2024 10:51:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:01:00.798347
- Title: Confidence Calibration of Classifiers with Many Classes
- Title(参考訳): 多くのクラスを有する分類器の信頼性校正
- Authors: Adrien Le Coz, Stéphane Herbin, Faouzi Adjed,
- Abstract要約: ニューラルネットワークに基づく分類モデルでは、最大クラス確率が信頼スコアとしてしばしば使用される。
このスコアは正しい予測を行う確率を十分に予測することは滅多になく、後処理のキャリブレーションステップを必要とする。
- 参考スコア(独自算出の注目度): 5.018156030818883
- License:
- Abstract: For classification models based on neural networks, the maximum predicted class probability is often used as a confidence score. This score rarely predicts well the probability of making a correct prediction and requires a post-processing calibration step. However, many confidence calibration methods fail for problems with many classes. To address this issue, we transform the problem of calibrating a multiclass classifier into calibrating a single surrogate binary classifier. This approach allows for more efficient use of standard calibration methods. We evaluate our approach on numerous neural networks used for image or text classification and show that it significantly enhances existing calibration methods.
- Abstract(参考訳): ニューラルネットワークに基づく分類モデルでは、最大クラス確率が信頼スコアとしてしばしば使用される。
このスコアは正しい予測を行う確率を十分に予測することは滅多になく、後処理のキャリブレーションステップを必要とする。
しかし、多くのクラスの問題に対して多くの信頼度校正法が失敗する。
この問題に対処するため、我々はマルチクラス分類器を校正する問題を単一代理二項分類器の校正に変換する。
このアプローチにより、標準校正法のより効率的な利用が可能になる。
画像やテキストの分類に使用される多数のニューラルネットワークに対するアプローチを評価し,既存の校正手法を大幅に強化することを示す。
関連論文リスト
- Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
カーネルベースのキャリブレーションメトリクスを導入し、分類と回帰の両方で一般的なキャリブレーションの形式を統一・一般化する。
これらの指標は、異なるサンプル推定を許容しており、キャリブレーションの目的を経験的リスク最小化に組み込むのが容易である。
決定タスクにキャリブレーションメトリクスを調整し、正確な損失推定を行ない、後悔しない決定を行うための直感的なメカニズムを提供する。
論文 参考訳(メタデータ) (2023-10-31T06:19:40Z) - Calibration of Neural Networks [77.34726150561087]
本稿では,ニューラルネットワークの文脈における信頼性校正問題について調査する。
我々は,問題文,キャリブレーション定義,評価に対する異なるアプローチについて分析する。
実験実験では、様々なデータセットとモデルをカバーし、異なる基準に従って校正方法を比較する。
論文 参考訳(メタデータ) (2023-03-19T20:27:51Z) - Multi-Head Multi-Loss Model Calibration [13.841172927454204]
我々は,深層アンサンブルの訓練と推論に要する費用を省く,単純化されたアンサンブルの形式を導入する。
具体的には、各頭部は、重み付きクロスエントロピー損失を最小限に抑えるために訓練されるが、重みは異なる枝によって異なる。
その結果,2つの挑戦データセットにおいて精度を犠牲にすることなく,精度の高いキャリブレーションを達成できることが示唆された。
論文 参考訳(メタデータ) (2023-03-02T09:32:32Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
セマンティックセグメンテーションキャリブレーションの問題について検討する。
モデルキャパシティ、作物サイズ、マルチスケールテスト、予測精度はキャリブレーションに影響を及ぼす。
我々は、単純で統一的で効果的なアプローチ、すなわち選択的スケーリングを提案する。
論文 参考訳(メタデータ) (2022-12-22T22:05:16Z) - Class-wise and reduced calibration methods [0.0]
キャリブレーションの削減により、元の問題をより単純なものに変換する方法を示す。
第2に,ニューラル崩壊という現象に基づいて,クラスワイドキャリブレーション手法を提案する。
この2つの手法を併用すると、予測とクラスごとの校正誤差を低減する強力なツールであるクラス単位での校正アルゴリズムが実現される。
論文 参考訳(メタデータ) (2022-10-07T17:13:17Z) - Meta-Cal: Well-controlled Post-hoc Calibration by Ranking [23.253020991581963]
ポストホックキャリブレーションは、モデルを再キャリブレーションするためのテクニックであり、その目標はキャリブレーションマップを学ぶことです。
既存のアプローチは主に、キャリブレーション誤差の低いキャリブレーションマップの構築に重点を置いている。
校正誤差の低いキャリブレータは、実際には有用であるとは限らないため、制約下でのマルチクラス分類のポストホックキャリブレーションを研究します。
論文 参考訳(メタデータ) (2021-05-10T12:00:54Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
ドメインシフト下でのキャリブレーションの問題を導入し、それに対処するための重要サンプリングに基づくアプローチを提案する。
実世界のデータセットと合成データセットの両方において,本手法の有効性を評価し検討した。
論文 参考訳(メタデータ) (2020-06-29T21:50:07Z) - Multi-Class Uncertainty Calibration via Mutual Information
Maximization-based Binning [8.780958735684958]
ポストホック多クラスキャリブレーションは、ディープニューラルネットワーク予測の信頼度推定を提供する一般的なアプローチである。
近年の研究では、広く使われているスケーリング手法がキャリブレーション誤差を過小評価していることが示されている。
類似クラス間で1つのキャリブレータを共有する共有クラスワイド(sCW)キャリブレーション戦略を提案する。
論文 参考訳(メタデータ) (2020-06-23T15:31:59Z) - Calibration of Neural Networks using Splines [51.42640515410253]
キャリブレーション誤差の測定は、2つの経験的分布を比較します。
古典的コルモゴロフ・スミルノフ統計テスト(KS)にインスパイアされたビンニングフリーキャリブレーション尺度を導入する。
提案手法は,KS誤差に対する既存の手法と,他の一般的なキャリブレーション手法とを一貫して比較する。
論文 参考訳(メタデータ) (2020-06-23T07:18:05Z) - Intra Order-preserving Functions for Calibration of Multi-Class Neural
Networks [54.23874144090228]
一般的なアプローチは、元のネットワークの出力をキャリブレーションされた信頼スコアに変換する、ポストホックキャリブレーション関数を学ぶことである。
以前のポストホックキャリブレーション技術は単純なキャリブレーション機能でしか機能しない。
本稿では,順序保存関数のクラスを表すニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-03-15T12:57:21Z) - Better Classifier Calibration for Small Data Sets [0.0]
キャリブレーションのためのデータ生成により,キャリブレーションアルゴリズムの性能が向上することを示す。
提案手法は計算コストを増大させるが、主なユースケースは小さなデータセットであるので、この余分な計算コストは重要ではない。
論文 参考訳(メタデータ) (2020-02-24T12:27:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。