論文の概要: PV-faultNet: Optimized CNN Architecture to detect defects resulting efficient PV production
- arxiv url: http://arxiv.org/abs/2411.02997v1
- Date: Tue, 05 Nov 2024 10:58:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:50.086395
- Title: PV-faultNet: Optimized CNN Architecture to detect defects resulting efficient PV production
- Title(参考訳): PV-faultNet: 効率的なPV生産を実現する欠陥検出のための最適化CNNアーキテクチャ
- Authors: Eiffat E Zaman, Rahima Khanam,
- Abstract要約: 本研究では,太陽光発電(PV)セルの高効率かつリアルタイムな欠陥検出に最適化された,軽量な畳み込みニューラルネットワーク(CNN)アーキテクチャであるPV-faultNetを提案する。
このモデルにはわずか292万のパラメータが含まれており、精度を犠牲にすることなく処理要求を大幅に削減している。
91%の精度、89%のリコール、90%のF1スコアを達成し、PV生産におけるスケーラブルな品質管理の有効性を実証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The global shift towards renewable energy has pushed PV cell manufacturing as a pivotal point as they are the fundamental building block of green energy. However, the manufacturing process is complex enough to lose its purpose due to probable defects experienced during the time impacting the overall efficiency. However, at the moment, manual inspection is being conducted to detect the defects that can cause bias, leading to time and cost inefficiency. Even if automated solutions have also been proposed, most of them are resource-intensive, proving ineffective in production environments. In that context, this study presents PV-faultNet, a lightweight Convolutional Neural Network (CNN) architecture optimized for efficient and real-time defect detection in photovoltaic (PV) cells, designed to be deployable on resource-limited production devices. Addressing computational challenges in industrial PV manufacturing environments, the model includes only 2.92 million parameters, significantly reducing processing demands without sacrificing accuracy. Comprehensive data augmentation techniques were implemented to tackle data scarcity, thus enhancing model generalization and maintaining a balance between precision and recall. The proposed model achieved high performance with 91\% precision, 89\% recall, and a 90\% F1 score, demonstrating its effectiveness for scalable quality control in PV production.
- Abstract(参考訳): 再生可能エネルギーへの世界的なシフトは、グリーンエネルギーの基本的なビルディングブロックであるPVセル製造を重要なポイントに押し上げた。
しかし、製造プロセスは、全体の効率に影響を与える期間に経験した可能性のある欠陥のために、その目的を失うのに十分複雑である。
しかし、現時点では、バイアスを引き起こす可能性のある欠陥を検出するために手動で検査が行われており、時間とコストの非効率につながる。
自動化されたソリューションも提案されているとしても、そのほとんどはリソース集約型であり、運用環境では効果がないことが証明されている。
そこで本研究では、太陽光発電(PV)セルにおける効率よくリアルタイムな欠陥検出に最適化された軽量な畳み込みニューラルネットワーク(CNN)アーキテクチャであるPV-faultNetについて述べる。
産業用PV製造環境における計算上の課題に対処するため、このモデルは220万のパラメータのみを含み、精度を犠牲にすることなく処理要求を大幅に削減する。
データ不足に対処するために包括的データ拡張技術が実装され、モデル一般化が向上し、精度とリコールのバランスが保たれた。
提案モデルでは,91 %の精度,89 %のリコール,90 %のF1 スコアで高い性能を達成し,PV 生産におけるスケーラブルな品質管理の有効性を実証した。
関連論文リスト
- AI-Powered Dynamic Fault Detection and Performance Assessment in Photovoltaic Systems [44.99833362998488]
太陽光発電(PV)の断続的な性質により、電力損失は10-70%、エネルギー生産量は25%減少する。
現在の故障検出戦略はコストが高く、複雑なデータ信号プロファイルのために信頼性の低い結果が得られることが多い。
本研究では,PythonのPVlibライブラリを用いた動的損失量子化アルゴリズムを取り入れた計算モデルを提案する。
論文 参考訳(メタデータ) (2024-08-19T23:52:06Z) - Fast Cell Library Characterization for Design Technology Co-Optimization Based on Graph Neural Networks [0.1752969190744922]
設計技術の共同最適化(DTCO)は、最適パワー、性能、領域を達成する上で重要な役割を果たす。
本稿では,高速かつ正確なセルライブラリ解析のためのグラフニューラルネットワーク(GNN)に基づく機械学習モデルを提案する。
論文 参考訳(メタデータ) (2023-12-20T06:10:27Z) - Unveiling the Invisible: Enhanced Detection and Analysis of Deteriorated
Areas in Solar PV Modules Using Unsupervised Sensing Algorithms and 3D
Augmented Reality [1.0310343700363547]
本稿では,太陽光発電モジュールのホットスポットやスネールトレイルなどの異常を自動的に同定し,解析する基盤となる手法を提案する。
従来の診断法と修復法を変換することにより,効率を高めるだけでなく,PVシステムのメンテナンスコストを大幅に削減する。
我々の目指すのは、リアルタイムで自動ソーラーパネル検出にドローン技術を活用することで、PVのメンテナンスの有効性を大幅に向上させることです。
論文 参考訳(メタデータ) (2023-07-11T09:27:00Z) - A lightweight network for photovoltaic cell defect detection in
electroluminescence images based on neural architecture search and knowledge
distillation [9.784061533539822]
畳み込みニューラルネットワーク(CNN)は、PV細胞の既存の自動欠陥検出に広く用いられている。
本稿では,ニューラルアーキテクチャ探索と知識蒸留に基づくPVセルの自動欠陥検出のための軽量高性能モデルを提案する。
提案した軽量高性能モデルは、実際の産業プロジェクトのエンドデバイスに容易に展開でき、精度を維持できる。
論文 参考訳(メタデータ) (2023-02-15T04:00:35Z) - Recognition of Defective Mineral Wool Using Pruned ResNet Models [88.24021148516319]
我々はミネラルウールのための視覚品質管理システムを開発した。
ウール標本のX線画像が収集され、欠陥および非欠陥サンプルのトレーニングセットが作成された。
我々は98%以上の精度のモデルを得たが、同社の現在の手順と比較すると、20%以上の欠陥製品を認識することができる。
論文 参考訳(メタデータ) (2022-11-01T13:58:02Z) - Anomaly segmentation model for defects detection in electroluminescence
images of heterojunction solar cells [0.0]
本稿では, 太陽電池の品質評価と異常検出のために, 蛍光画像の分類とセマンティックセグメンテーションを行うためのディープラーニングベース自動検出モデルSeMaCNNを提案する。
モデルのコアはマハラノビス距離に基づく異常検出アルゴリズムであり、関連する欠陥のある少数のデジタルエレクトロルミネッセンス画像との不均衡なデータに基づいて、半教師付きで訓練することができる。
本モデルの精度は92.5%,F1スコア95.8%,リコール94.8%,精度96.9%で,手動で注釈付き画像1049枚からなる。
論文 参考訳(メタデータ) (2022-08-11T18:02:36Z) - CellDefectNet: A Machine-designed Attention Condenser Network for
Electroluminescence-based Photovoltaic Cell Defect Inspection [67.99623869339919]
太陽電池の視覚検査で業界が直面している大きな課題は、現在人間の検査員が手動で行っていることである。
本研究では,機械駆動設計探索により設計した高効率アテンションコンデンサネットワークであるCellDefectNetを紹介する。
発光画像を用いた太陽電池セルの多様性を示すベンチマークデータセット上で,セルデフェクトネットの有効性を実証した。
論文 参考訳(メタデータ) (2022-04-25T16:35:19Z) - TinyDefectNet: Highly Compact Deep Neural Network Architecture for
High-Throughput Manufacturing Visual Quality Inspection [72.88856890443851]
TinyDefectNetは、高スループット製造の視覚品質検査に適した、非常にコンパクトな深層畳み込みネットワークアーキテクチャである。
TinyDefectNetはAMD EPYC 7R32上にデプロイされ、ネイティブフロー環境を使って7.6倍のスループット、AMD ZenDNNアクセラレーターライブラリを使って9倍のスループットを達成した。
論文 参考訳(メタデータ) (2021-11-29T04:19:28Z) - Efficient pre-training objectives for Transformers [84.64393460397471]
本研究はトランスフォーマーモデルにおける高効率事前学習目標について検討する。
マスクトークンの除去と損失時のアウトプット全体の考慮が,パフォーマンス向上に不可欠な選択であることを証明する。
論文 参考訳(メタデータ) (2021-04-20T00:09:37Z) - Towards Practical Lipreading with Distilled and Efficient Models [57.41253104365274]
ニューラルネットワークの復活により、リリーディングは多くの進歩を目の当たりにした。
最近の研究は、最適なアーキテクチャを見つけるか、一般化を改善することで、パフォーマンスを改善するといった側面に重点を置いている。
現在の方法論と、実践的なシナリオにおける効果的なリップリーディングのデプロイ要件との間には、依然として大きなギャップがあります。
まず, LRW と LRW-1000 をそれぞれ 88.5% と 46.6% に比例して, 最先端の性能を高めることを提案する。
論文 参考訳(メタデータ) (2020-07-13T16:56:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。