論文の概要: AI-Powered Dynamic Fault Detection and Performance Assessment in Photovoltaic Systems
- arxiv url: http://arxiv.org/abs/2409.00052v1
- Date: Mon, 19 Aug 2024 23:52:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-08 15:31:02.400461
- Title: AI-Powered Dynamic Fault Detection and Performance Assessment in Photovoltaic Systems
- Title(参考訳): 太陽光発電システムにおけるAI駆動動的故障検出と性能評価
- Authors: Nelson Salazar-Pena, Alejandra Tabares, Andres Gonzalez-Mancera,
- Abstract要約: 太陽光発電(PV)の断続的な性質により、電力損失は10-70%、エネルギー生産量は25%減少する。
現在の故障検出戦略はコストが高く、複雑なデータ信号プロファイルのために信頼性の低い結果が得られることが多い。
本研究では,PythonのPVlibライブラリを用いた動的損失量子化アルゴリズムを取り入れた計算モデルを提案する。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The intermittent nature of photovoltaic (PV) solar energy, driven by variable weather, leads to power losses of 10-70% and an average energy production decrease of 25%. Accurate loss characterization and fault detection are crucial for reliable PV system performance and efficiency, integrating this data into control signal monitoring systems. Computational modeling of PV systems supports technological, economic, and performance analyses, but current models are often rigid, limiting advanced performance optimization and innovation. Conventional fault detection strategies are costly and often yield unreliable results due to complex data signal profiles. Artificial intelligence (AI), especially machine learning algorithms, offers improved fault detection by analyzing relationships between input parameters (e.g., meteorological and electrical) and output metrics (e.g., production). Once trained, these models can effectively identify faults by detecting deviations from expected performance. This research presents a computational model using the PVlib library in Python, incorporating a dynamic loss quantification algorithm that processes meteorological, operational, and technical data. An artificial neural network (ANN) trained on synthetic datasets with a five-minute resolution simulates real-world PV system faults. A dynamic threshold definition for fault detection is based on historical data from a PV system at Universidad de los Andes. Key contributions include: (i) a PV system model with a mean absolute error of 6.0% in daily energy estimation; (ii) dynamic loss quantification without specialized equipment; (iii) an AI-based algorithm for technical parameter estimation, avoiding special monitoring devices; and (iv) a fault detection model achieving 82.2% mean accuracy and 92.6% maximum accuracy.
- Abstract(参考訳): 太陽エネルギーの断続的な性質は、変動気象によって駆動され、電力損失は10-70%、平均エネルギー生産量は25%減少する。
正確な損失特性と故障検出は、信頼性の高いPVシステム性能と効率のために重要であり、これらのデータを制御信号監視システムに統合する。
PVシステムの計算モデリングは、技術、経済、性能分析をサポートするが、現在のモデルは、しばしば厳格であり、高度な性能最適化と革新を制限している。
従来の障害検出戦略はコストが高く、複雑なデータ信号プロファイルのために信頼性の低い結果が得られることが多い。
人工知能(AI)、特に機械学習アルゴリズムは、入力パラメータ(例えば、気象および電気)と出力メトリクス(例えば、生産)の関係を分析することによって、障害検出を改善する。
トレーニングが完了すると、これらのモデルは期待されたパフォーマンスから逸脱を検出することによって、障害を効果的に識別できる。
本研究では,気象,運用,技術データを処理する動的損失定量化アルゴリズムを取り入れたPythonのPVlibライブラリを用いた計算モデルを提案する。
5分間の解像度で合成データセットに基づいてトレーニングされた人工ニューラルネットワーク(ANN)は、現実のPVシステム障害をシミュレートする。
断層検出のための動的しきい値の定義は、ロス・アンデス大学のPVシステムからの履歴データに基づいている。
主な貢献は以下の通り。
(i)平均絶対誤差が6.0%のPVシステムモデル
二 専門設備のない動的損失定量化
三 特殊監視装置を回避し、技術的パラメータ推定のためのAIベースのアルゴリズム
(4)平均精度82.2%、最大精度92.6%の故障検出モデル。
関連論文リスト
- Multivariate Physics-Informed Convolutional Autoencoder for Anomaly Detection in Power Distribution Systems with High Penetration of DERs [0.0]
本稿では,物理インフォームド・コンボリューション・オートエンコーダ(PIConvAE)モデルを提案する。
提案モデルの性能評価は,カリフォルニア州リバーサイドのIEEE 123バスシステムと実世界の給電システムを用いて行った。
論文 参考訳(メタデータ) (2024-06-05T04:28:57Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - A Comparative Study of Machine Learning Models Predicting Energetics of Interacting Defects [5.574191640970887]
本稿では,相互作用する欠陥のあるシステムの自由エネルギー変化を予測する3つの方法の比較研究を行う。
その結果,この限られたデータセットであっても,クラスタ展開モデルによって正確なエネルギー予測が達成できることが示唆された。
本研究では,不完全な表面システムに機械学習を適用した予備評価を行う。
論文 参考訳(メタデータ) (2024-03-20T02:15:48Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
電力系統の信頼性を確保するためには絶縁体の検査が重要である。
検査プロセスを自動化するために、ディープラーニングがますます活用されています。
本稿では,異常検出とオブジェクト検出の2段階的アプローチを提案する。
論文 参考訳(メタデータ) (2023-11-14T11:36:20Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
本稿では,2つの異常検出・分類手法,すなわち行列プロファイルアルゴリズムと異常変換器を提案する。
行列プロファイルアルゴリズムは、ストリーミング時系列データにおけるリアルタイム異常を検出するための一般化可能なアプローチとして適している。
検知器の感度、リコール、検出精度を調整するために、一連のカスタムフィルタが作成され、追加される。
論文 参考訳(メタデータ) (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
ライン障害のリアルタイムかつ正確な検出は、極端な気象の影響を緩和し、緊急制御を活性化する最初のステップである。
電力収支方程式は、非線形性、極端な事象における発生の不確実性の増加、グリッドオブザーバビリティの欠如は、従来のデータ駆動障害検出手法の効率を損なう。
本稿では,グリッドトポロジ情報を利用した物理インフォームドライン故障検出器(FIELD)を提案する。
論文 参考訳(メタデータ) (2022-08-31T18:19:25Z) - Practical Recommendations for the Design of Automatic Fault Detection
Algorithms Based on Experiments with Field Monitoring Data [0.0]
自動故障検出(AFD)は太陽光発電システムポートフォリオの運用と保守を最適化するための重要な技術である。
本研究では,ドイツに設置した80基の屋上型PVシステムにおいて58ヶ月以上にわたって収集されたモニタリングデータを用いて,実運転条件下で一連のAFDアルゴリズムを検証した。
その結果、この種のAFDアルゴリズムは、90%以上の特異性を持つエネルギー損失の82.8%を検出できる可能性が示された。
論文 参考訳(メタデータ) (2022-03-02T13:43:17Z) - Data-driven Residual Generation for Early Fault Detection with Limited
Data [4.129225533930966]
多くの複雑なシステムでは、システムのための高精度なモデルを開発することは不可能である。
データ駆動型ソリューションは、いくつかの実践的な理由から、産業システムにおいて大きな注目を集めている。
モデルに基づく手法とは異なり、圧力や電圧などの時系列測定を他の情報源と組み合わせることが直接の前進である。
論文 参考訳(メタデータ) (2021-09-28T03:18:03Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。