Multiple-basis representation of quantum states
- URL: http://arxiv.org/abs/2411.03110v1
- Date: Tue, 05 Nov 2024 13:57:57 GMT
- Title: Multiple-basis representation of quantum states
- Authors: Adrián Pérez-Salinas, Patrick Emonts, Jordi Tura, Vedran Dunjko,
- Abstract summary: We explore a new hybrid, efficient quantum-classical representation of quantum states, the multiple-basis representation.
This representation consists of a linear combination of states that are sparse in some given and different bases, specified by quantum circuits.
We find cases in which this representation can be used, namely approximation of ground states, simulation of deeper computations by specifying bases with shallow circuits, and a tomographical protocol to describe states as multiple-basis representations.
- Score: 1.1999555634662633
- License:
- Abstract: Classical simulation of quantum physics is a central approach to investigating physical phenomena. Quantum computers enhance computational capabilities beyond those of classical resources, but it remains unclear to what extent existing limited quantum computers can contribute to this enhancement. In this work, we explore a new hybrid, efficient quantum-classical representation of quantum states, the multiple-basis representation. This representation consists of a linear combination of states that are sparse in some given and different bases, specified by quantum circuits. Such representation is particularly appealing when considering depth-limited quantum circuits within reach of current hardware. We analyze the expressivity of multiple-basis representation states depending on the classical simulability of their quantum circuits. In particular, we show that multiple-basis representation states include, but are not restricted to, both matrix-product states and stabilizer states. Furthermore, we find cases in which this representation can be used, namely approximation of ground states, simulation of deeper computations by specifying bases with shallow circuits, and a tomographical protocol to describe states as multiple-basis representations. We envision this work to open the path of simultaneous use of several hardware-friendly bases, a natural description of hybrid computational methods accessible for near-term hardware.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Superselection rules and bosonic quantum computational resources [0.0]
We identify and classify quantum optical non-classical states as classical/non-classical based on the resources they create on a bosonic quantum computer.
Our work contributes to establish a seamless transition from continuous to discrete properties of quantum optics.
arXiv Detail & Related papers (2024-07-03T14:18:41Z) - Mixed-Dimensional Qudit State Preparation Using Edge-Weighted Decision Diagrams [3.393749500700096]
Quantum computers have the potential to solve intractable problems.
One key element to exploiting this potential is the capability to efficiently prepare quantum states for multi-valued, or qudit, systems.
In this paper, we investigate quantum state preparation with a focus on mixed-dimensional systems.
arXiv Detail & Related papers (2024-06-05T18:00:01Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum simulation of excited states from parallel contracted quantum
eigensolvers [5.915403570478968]
We show that a ground-state contracted quantum eigensolver can be generalized to compute any number of quantum eigenstates simultaneously.
We introduce two excited-state CQEs that perform the excited-state calculation while inheriting many of the remarkable features of the original ground-state version of the algorithm.
arXiv Detail & Related papers (2023-11-08T23:52:31Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.