論文の概要: Unleashing the power of novel conditional generative approaches for new materials discovery
- arxiv url: http://arxiv.org/abs/2411.03156v1
- Date: Tue, 05 Nov 2024 14:58:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:58:25.749324
- Title: Unleashing the power of novel conditional generative approaches for new materials discovery
- Title(参考訳): 新しい材料発見のための新しい条件生成手法のパワーを解き放つ
- Authors: Lev Novitskiy, Vladimir Lazarev, Mikhail Tiutiulnikov, Nikita Vakhrameev, Roman Eremin, Innokentiy Humonen, Andrey Kuznetsov, Denis Dimitrov, Semen Budennyy,
- Abstract要約: 結晶構造設計問題に対する2つの生成的アプローチを提案する。
1つは条件付き構造変化であり、最もエネルギー的に好ましい構造と全てのより安定なポリモルフィックの間のエネルギー差を利用する。
もう1つは条件付き構造の生成であり、最もエネルギー的に好ましい構造と、その全てのより安定したポリモルフィックの間のエネルギー差を利用する。
- 参考スコア(独自算出の注目度): 3.972733741872872
- License:
- Abstract: For a very long time, computational approaches to the design of new materials have relied on an iterative process of finding a candidate material and modeling its properties. AI has played a crucial role in this regard, helping to accelerate the discovery and optimization of crystal properties and structures through advanced computational methodologies and data-driven approaches. To address the problem of new materials design and fasten the process of new materials search, we have applied latest generative approaches to the problem of crystal structure design, trying to solve the inverse problem: by given properties generate a structure that satisfies them without utilizing supercomputer powers. In our work we propose two approaches: 1) conditional structure modification: optimization of the stability of an arbitrary atomic configuration, using the energy difference between the most energetically favorable structure and all its less stable polymorphs and 2) conditional structure generation. We used a representation for materials that includes the following information: lattice, atom coordinates, atom types, chemical features, space group and formation energy of the structure. The loss function was optimized to take into account the periodic boundary conditions of crystal structures. We have applied Diffusion models approach, Flow matching, usual Autoencoder (AE) and compared the results of the models and approaches. As a metric for the study, physical PyMatGen matcher was employed: we compare target structure with generated one using default tolerances. So far, our modifier and generator produce structures with needed properties with accuracy 41% and 82% respectively. To prove the offered methodology efficiency, inference have been carried out, resulting in several potentially new structures with formation energy below the AFLOW-derived convex hulls.
- Abstract(参考訳): 長い間、新しい材料の設計に対する計算的アプローチは、候補物質を見つけてその特性をモデル化する反復的なプロセスに依存してきた。
この点においてAIは重要な役割を担い、高度な計算方法論とデータ駆動アプローチを通じて結晶特性と構造を発見し、最適化するのに役立つ。
新たな材料設計の課題に対処し, 新たな材料探索のプロセスの高速化を目的として, 結晶構造設計の課題に最新の生成的アプローチを適用した。
私たちの研究では2つのアプローチを提案しています。
1) 条件構造修正: 任意の原子配置の安定性の最適化。
2) 条件付き構造生成。
我々は, 格子, 原子座標, 原子タイプ, 化学特性, 空間群, 構造形成エネルギーなどの情報を含む材料を表現した。
損失関数は結晶構造の周期的境界条件を考慮して最適化された。
我々は拡散モデルアプローチ、フローマッチング、通常のオートエンコーダ(AE)を適用し、モデルとアプローチの結果を比較した。
この研究の指標として、物理PyMatGenマーカが採用された。
これまでのところ、修飾器とジェネレータは、それぞれ41%と82%の精度で、必要な特性を持つ構造を生成する。
提案された方法論の効率を証明するため、推論が行われ、その結果、AFLOW由来の凸船体より下方で形成エネルギーの高いいくつかの新しい構造が生み出された。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
空間的に異なるミクロ構造対称性と異なる異なるマイクロ構造記述子を持つマルチスケール構造のためのフレームワークを提案する。
本研究は,密度に基づく設計最適化と整合性の統合の可能性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T14:17:43Z) - Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding [10.170537065646323]
結晶構造から材料の物性を予測することは、材料科学の基本的な問題である。
結晶構造が無限に繰り返し、原子の周期的な配列であり、完全に連結された注意が無限に連結された注意をもたらすことを示す。
本稿では, 結晶構造に対する簡単なトランスフォーマーベースエンコーダアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:37:42Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - Illuminating the property space in crystal structure prediction using
Quality-Diversity algorithms [5.380545611878407]
結晶構造予測分野へのテキスト品質多様性アルゴリズムの適用を提案する。
我々は機械学習シュロゲートモデルを用いて、最適化を導くために使用される原子間ポテンシャルと物質特性を計算する。
本稿では,ニューラルネットワークを用いて結晶特性をモデル化し,新しい構成-構造の組み合わせの同定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T07:38:31Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
計算化学において、結晶構造予測は最適化問題である。
この問題に対処する1つのアプローチは、密度汎関数理論(DFT)に基づいてシミュレータを構築し、続いてシミュレーションで探索を実行することである。
我々は,LCOM(最近の保守的客観モデル)と呼ばれる我々の手法が,構造予測の成功率の観点から,最も優れたアプローチと同等に機能することを示す。
論文 参考訳(メタデータ) (2023-10-16T04:35:44Z) - Data-Driven Score-Based Models for Generating Stable Structures with
Adaptive Crystal Cells [1.515687944002438]
本研究は, 化学安定性や化学組成など, 新しい結晶構造を創出することを目的としている。
提案手法の新規性は、結晶細胞の格子が固定されていないという事実にある。
対称性の制約を尊重し、計算上の優位性をもたらす多グラフ結晶表現が導入された。
論文 参考訳(メタデータ) (2023-10-16T02:53:24Z) - Crystal-GFN: sampling crystals with desirable properties and constraints [103.79058968784163]
本稿では,結晶構造の生成モデルであるCrystal-GFNを紹介する。
本稿では,MatBenchで学習した新しいプロキシ機械学習モデルにより予測された結晶構造の原子1個あたりの生成エネルギーを目的として利用する。
その結果、Crystal-GFNは低(中間-3.1 eV/原子)で生成エネルギーが予測される非常に多様な結晶をサンプリングできることが示された。
論文 参考訳(メタデータ) (2023-10-07T21:36:55Z) - Atomic structure generation from reconstructing structural fingerprints [1.2128971613239876]
本稿では、原子中心対称性関数を表現として、条件付き変分オートエンコーダを生成モデルとして、エンドツーエンド構造生成手法を提案する。
我々は、概念実証として、サブナノメーターPtナノ粒子の新規で有効な原子構造を生成することに成功した。
論文 参考訳(メタデータ) (2022-07-27T00:42:59Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。