論文の概要: PRS Length Expansion
- arxiv url: http://arxiv.org/abs/2411.03215v1
- Date: Tue, 05 Nov 2024 16:06:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:59:27.776803
- Title: PRS Length Expansion
- Title(参考訳): PRS長さ拡大
- Authors: Romi Levy, Thomas Vidick,
- Abstract要約: 擬似ランダム量子状態(英: Pseudo-random quantum state、PRS)は、量子暗号における鍵となるプリミティブである。
この研究は、いくつかのPRS発生器を拡張できると推測し、いくつかの特定の例に対してそのような拡張の証明を提供する。
- 参考スコア(独自算出の注目度): 4.31241676251521
- License:
- Abstract: One of the most fundamental results in classical cryptography is that the existence of Pseudo-Random Generators (PRG) that expands $k$ bits of randomness to $k+1$ bits that are pseudo-random implies the existence of PRG that expand $k$ bits of randomness to $k+f(k)$ bits for any $f(k)=poly(k)$. It appears that cryptography in the quantum realm sometimes works differently than in the classical case. Pseudo-random quantum states (PRS) are a key primitive in quantum cryptography, that demonstrates this point. There are several open questions in quantum cryptography about PRS, one of them is - can we expand quantum pseudo-randomness in a black-box way with the same key length? Although this is known to be possible in the classical case, the answer in the quantum realm is more complex. This work conjectures that some PRS generators can be expanded, and provides a proof for such expansion for some specific examples. In addition, this work demonstrates the relationship between the key length required to expand the PRS, the efficiency of the circuit to create it and the length of the resulting expansion.
- Abstract(参考訳): 古典暗号における最も基本的な結果の1つは、ランダムネスの$k$ビットを$k+1$ビットに拡張するPseudo-Random Generators (PRG)の存在は、ランダムネスの$k$ビットを$f(k)=poly(k)$ビットに拡張するPRGの存在を意味する。
量子領域における暗号は、古典的な場合と異なる働きをすることがある。
擬似ランダム量子状態(英: Pseudo-random quantum state、PRS)は、量子暗号における鍵となるプリミティブであり、この点を示している。
一つは、同じ鍵長のブラックボックス方式で量子擬似ランダム性を拡張することができるか?
古典的な場合、これは可能であることが知られているが、量子領域の答えはより複雑である。
この研究は、いくつかのPRS発生器を拡張できると推測し、いくつかの特定の例に対してそのような拡張の証明を提供する。
さらに、この研究は、PSSを拡張するのに必要な鍵長、それを作成する回路の効率、および結果として生じる拡張の長さの関係を示す。
関連論文リスト
- Founding Quantum Cryptography on Quantum Advantage, or, Towards Cryptography from $\mathsf{\#P}$-Hardness [10.438299411521099]
近年の分離により、階層構造が崩壊しても持続する硬さの源から量子暗号を構築する可能性が高まっている。
量子暗号は、$mathsfP#P notsubseteq mathsf(io)BQP/qpoly$という非常に穏やかな仮定に基づいている。
論文 参考訳(メタデータ) (2024-09-23T17:45:33Z) - Quantum One-Wayness of the Single-Round Sponge with Invertible Permutations [49.1574468325115]
スポンジハッシュは、広く使われている暗号ハッシュアルゴリズムのクラスである。
これまでのところ、不規則な置換は根本的なオープンな問題のままである。
ランダムな2n$-bit置換でゼロペアを見つけるには、少なくとも$Omega(2n/2)$多くのクエリが必要である。
論文 参考訳(メタデータ) (2024-03-07T18:46:58Z) - The Power of Unentangled Quantum Proofs with Non-negative Amplitudes [55.90795112399611]
非負の振幅を持つ非絡み合った量子証明のパワー、つまり $textQMA+(2)$ を表すクラスについて研究する。
特に,小集合拡張,ユニークなゲーム,PCP検証のためのグローバルプロトコルを設計する。
QMA(2) が $textQMA+(2)$ に等しいことを示す。
論文 参考訳(メタデータ) (2024-02-29T01:35:46Z) - Quantum Pseudorandomness Cannot Be Shrunk In a Black-Box Way [0.0]
Pseudorom Quantum States (PRS) は、Ji, Liu, Songによって、Pseudorandom Generatorsと類似した量子として導入された。
対数サイズの出力を持つPSSであるショートPRSは、暗号アプリケーションとともに文献に導入されている。
ここでは、擬似ランダム性を維持しながら、2021年から対数量子ビット長までPSSの出力を縮小することは不可能であることを示す。
論文 参考訳(メタデータ) (2024-02-20T19:02:43Z) - Signatures From Pseudorandom States via $\bot$-PRFs [0.11650821883155184]
我々は $bot$-PRG と $bot$-PRF の新たな定義を導入する。
私たちの主な応用は、古典的な公開鍵と署名を備えた(量子)デジタル署名スキームです。
論文 参考訳(メタデータ) (2023-11-01T20:54:50Z) - Public-Key Encryption with Quantum Keys [11.069434965621683]
鍵が量子状態であることが許される量子公開鍵暗号(qPKE)の概念について検討する。
量子公開鍵暗号を構築するには計算仮定が必要であることを示す。
論文 参考訳(メタデータ) (2023-06-13T11:32:28Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Quantum Depth in the Random Oracle Model [57.663890114335736]
浅量子回路の計算能力と古典計算の組合せを包括的に評価する。
いくつかの問題に対して、1つの浅い量子回路で適応的な測定を行う能力は、適応的な測定をせずに多くの浅い量子回路を実行する能力よりも有用である。
論文 参考訳(メタデータ) (2022-10-12T17:54:02Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
計算・比較プログラム(Computer-and-compare program)として知られる回避関数のクラスに対する量子コピー保護スキームを導入する。
我々は,量子乱数オラクルモデル(QROM)において,完全悪意のある敵に対する非自明なセキュリティを実現することを証明した。
補完的な結果として、「セキュアソフトウェアリース」という,ソフトウェア保護の概念の弱さが示される。
論文 参考訳(メタデータ) (2020-09-29T08:41:53Z) - Scalable Pseudorandom Quantum States [14.048989759890476]
PRSジェネレータの既存の構成では、州内のキュービット数のセキュリティスケール、すなわち$n$-qubit PRSの(統計的な)セキュリティパラメータは、およそ$n$である。
量子セキュアな片方向関数は、スケーラブルなPSSを意味することを示す。
まず,ランダム関数へのオラクルアクセスが与えられると,そのランダム関数を量子セキュア(古典的)擬似ランダム関数に置き換えて,計算セキュリティを実現するというパラダイムを踏襲する。
論文 参考訳(メタデータ) (2020-04-04T17:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。