論文の概要: A Personal data Value at Risk Approach
- arxiv url: http://arxiv.org/abs/2411.03217v1
- Date: Tue, 05 Nov 2024 16:09:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 14:58:25.114528
- Title: A Personal data Value at Risk Approach
- Title(参考訳): リスクアプローチにおける個人データの価値
- Authors: Luis Enriquez,
- Abstract要約: 本稿では,データコントローラの観点から,データ保護リスクベースのコンプライアンスに対する定量的アプローチを提案する。
データ保護分析、量的リスク分析、専門家の意見を校正することで、データ保護の影響評価を改善することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: What if the main data protection vulnerability is risk management? Data Protection merges three disciplines: data protection law, information security, and risk management. Nonetheless, very little research has been made on the field of data protection risk management, where subjectivity and superficiality are the dominant state of the art. Since the GDPR tells you what to do, but not how to do it, the solution for approaching GDPR compliance is still a gray zone, where the trend is using the rule of thumb. Considering that the most important goal of risk management is to reduce uncertainty in order to take informed decisions, risk management for the protection of the rights and freedoms of the data subjects cannot be disconnected from the impact materialization that data controllers and processors need to assess. This paper proposes a quantitative approach to data protection risk-based compliance from a data controllers perspective, with the aim of proposing a mindset change, where data protection impact assessments can be improved by using data protection analytics, quantitative risk analysis, and calibrating expert opinions.
- Abstract(参考訳): 主要なデータ保護の脆弱性がリスク管理である場合はどうでしょう?
データ保護法、情報セキュリティ、リスク管理の3つの分野が統合されている。
それでも、主観性と超能力が最先端の最先端技術であるデータ保護リスク管理の分野での研究はほとんど行われていない。
GDPRが何をすべきかを教えてくれるが、それを行う方法ではないため、GDPRのコンプライアンスにアプローチする解決策はまだグレーゾーンであり、トレンドは親指のルールを使用している。
リスク管理の最も重要な目的は、情報的決定を行う上での不確実性を減らすことであるため、データ管理とプロセッサが評価する必要がある影響物質化からデータ対象の権利と自由を守るためのリスク管理は切り離せない。
本稿では,データ保護分析,量的リスク分析,専門家の意見を校正することで,データ保護の影響評価を改善するという考え方転換をめざして,データコントローラの観点からのデータ保護リスクベースのコンプライアンスに対する定量的アプローチを提案する。
関連論文リスト
- The Data Minimization Principle in Machine Learning [61.17813282782266]
データ最小化は、収集、処理、保持されるデータの量を減らすことを目的としている。
様々な国際データ保護規制によって支持されている。
しかし、厳密な定式化が欠如しているため、その実践的な実装は依然として課題である。
論文 参考訳(メタデータ) (2024-05-29T19:40:27Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
論文 参考訳(メタデータ) (2024-03-28T17:28:06Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
統計開示制御は、機密情報を匿名化して暴露するリスクを最小限にすることを目的としている。
マイクロデータの復号化に使用される現在のプライバシ保存技術について概説し、様々な開示シナリオに適したプライバシ対策を掘り下げ、情報損失と予測性能の指標を評価する。
論文 参考訳(メタデータ) (2023-12-19T04:23:23Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
フェデレートラーニング(FL)により、データ所有者はデータを共有することなく、データガバナンスを維持し、モデルトレーニングをローカルで行うことができる。
FLと関連する技術は、しばしばプライバシー保護と表現される。
この用語が適切でない理由を説明し、プライバシの形式的定義を念頭に設計されていないプロトコルに対する過度な信頼に関連するリスクを概説する。
論文 参考訳(メタデータ) (2021-12-21T08:44:05Z) - Data Protection Impact Assessment for the Corona App [0.0]
SARS-CoV-2は2020年初頭からヨーロッパで普及し始めており、パンデミックとの戦いや封じ込めに関する技術的な解決策が強く求められている。
議論の中心には、連絡先追跡アプリに関する技術的な解決策が強く求められている。
EUの一般日時保護規則(DPIA)は、データ保護アセスメントを実施するために管理者を必要としている。
我々は,最も「プライバシフレンドリー」と考えられる3つの接触追跡アプリデザインを徹底的に検証する科学的DPIAを提案する。
論文 参考訳(メタデータ) (2021-01-18T19:23:30Z) - Reviving Purpose Limitation and Data Minimisation in Personalisation,
Profiling and Decision-Making Systems [0.0]
本論文では、学際法則とコンピュータサイエンスレンズを通じて、データ駆動システムにおいてデータ最小化と目的制限を有意義に実装できるかどうかを決定する。
分析の結果,この2つの法原則が個人データ処理のリスク軽減に重要な役割を担っていることが明らかとなった。
これらの原則は検討中のシステムにおいて重要なセーフガードであるが、実用的な実装には重要な制限がある。
論文 参考訳(メタデータ) (2021-01-15T16:36:29Z) - Privacy Preservation in Federated Learning: An insightful survey from
the GDPR Perspective [10.901568085406753]
この記事は、フェデレーテッドラーニングに使用できる最先端のプライバシー技術に関する調査に特化している。
近年の研究では、FLにおけるデータの保持と計算は、プライバシ保証者にとって不十分であることが示されている。
これは、FLシステム内のパーティ間で交換されるMLモデルパラメータが、いくつかのプライバシ攻撃で悪用されるためである。
論文 参考訳(メタデータ) (2020-11-10T21:41:25Z) - PCAL: A Privacy-preserving Intelligent Credit Risk Modeling Framework
Based on Adversarial Learning [111.19576084222345]
本稿では,PCAL(Adversarial Learning)に基づくプライバシ保護型信用リスクモデリングの枠組みを提案する。
PCALは、ターゲット予測タスクのパフォーマンスの重要なユーティリティ情報を維持しながら、元のデータセット内のプライベート情報を隠蔽することを目的としている。
結果は,PCALがユーザデータから効果的なプライバシフリー表現を学習し,信用リスク分析のためのプライバシ保存機械学習の基盤となることを示唆している。
論文 参考訳(メタデータ) (2020-10-06T07:04:59Z) - Risk Management Practices in Information Security: Exploring the Status
Quo in the DACH Region [3.375386983523507]
情報セキュリティリスク管理は、情報の価値と情報処理システムの適切な保護を保証することを目的としている。
本稿では,DACH地域における情報セキュリティ管理におけるリスクマネジメントの実践状況について検討する。
論文 参考訳(メタデータ) (2020-03-04T10:11:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。