論文の概要: Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities
- arxiv url: http://arxiv.org/abs/2411.03252v1
- Date: Tue, 05 Nov 2024 16:49:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:09.045939
- Title: Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities
- Title(参考訳): LLMを基盤としたコミュニティにおける社会的相互作用によるエージェントの自発創出
- Authors: Ryosuke Takata, Atsushi Masumori, Takashi Ikegami,
- Abstract要約: 本稿では,Large Language Model (LLM) ベースのエージェントを用いて,ゼロからエージェントが出現することを検討する。
このマルチエージェントシミュレーションを解析することにより、社会的規範、協力、性格特性が自然に出現する方法について、貴重な新しい知見を報告する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We study the emergence of agency from scratch by using Large Language Model (LLM)-based agents. In previous studies of LLM-based agents, each agent's characteristics, including personality and memory, have traditionally been predefined. We focused on how individuality, such as behavior, personality, and memory, can be differentiated from an undifferentiated state. The present LLM agents engage in cooperative communication within a group simulation, exchanging context-based messages in natural language. By analyzing this multi-agent simulation, we report valuable new insights into how social norms, cooperation, and personality traits can emerge spontaneously. This paper demonstrates that autonomously interacting LLM-powered agents generate hallucinations and hashtags to sustain communication, which, in turn, increases the diversity of words within their interactions. Each agent's emotions shift through communication, and as they form communities, the personalities of the agents emerge and evolve accordingly. This computational modeling approach and its findings will provide a new method for analyzing collective artificial intelligence.
- Abstract(参考訳): 本稿では,Large Language Model (LLM) ベースのエージェントを用いて,ゼロからエージェントが出現することを検討する。
LLMをベースとした従来の研究では、個性と記憶を含む各エージェントの特徴は、伝統的に事前に定義されてきた。
我々は、行動、個性、記憶などの個性が、未分化の状態とどのように区別されるかに焦点を当てた。
現在LLMエージェントはグループシミュレーション内で協調的なコミュニケーションを行い、自然言語でコンテキストベースのメッセージを交換する。
このマルチエージェントシミュレーションを解析することにより、社会的規範、協力、性格特性が自然に出現する方法について、貴重な新しい知見を報告する。
本稿では、自律的に相互作用するLLMエージェントが、コミュニケーションを維持するために幻覚やハッシュタグを生成し、それによって対話内の単語の多様性を増大させることを示す。
各エージェントの感情はコミュニケーションを通じて変化し、それらがコミュニティを形成するにつれて、エージェントの個性が出現して進化する。
この計算モデリング手法とその発見は、集合人工知能を解析するための新しい方法を提供する。
関連論文リスト
- The Dynamics of Social Conventions in LLM populations: Spontaneous Emergence, Collective Biases and Tipping Points [0.0]
シミュレーション対話を用いたLarge Language Model (LLM) エージェントの集団内におけるコンベンションのダイナミクスについて検討する。
グローバルに受け入れられる社会慣行は,LLM間の局所的な相互作用から自然に生じうることを示す。
献身的なLLMのマイノリティグループは、新しい社会慣習を確立することで社会変革を促進することができる。
論文 参考訳(メタデータ) (2024-10-11T16:16:38Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Can Agents Spontaneously Form a Society? Introducing a Novel Architecture for Generative Multi-Agents to Elicit Social Emergence [0.11249583407496219]
我々は,ITCMA-Sと呼ばれる生成エージェントアーキテクチャを導入し,個々のエージェントの基本的なフレームワークと,マルチエージェント間のソーシャルインタラクションをサポートするフレームワークを紹介する。
このアーキテクチャは、エージェントが社会的相互作用に有害な行動を識別し、フィルタリングし、より好ましい行動を選択するように誘導することを可能にする。
論文 参考訳(メタデータ) (2024-09-10T13:39:29Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - Transforming Agency. On the mode of existence of Large Language Models [0.0]
本稿では,ChatGPTのような大規模言語モデル(LLM)のオントロジ的特徴について検討する。
また,ChatGPTは,言語オートマトンやインターロケータ,言語オートマトンとして特徴付けられるべきだと論じる。
論文 参考訳(メタデータ) (2024-07-15T14:01:35Z) - SocialBench: Sociality Evaluation of Role-Playing Conversational Agents [85.6641890712617]
大規模言語モデル(LLM)は、様々なAI対話エージェントの開発を進めてきた。
SocialBenchは、ロールプレイングの会話エージェントの社会的性を個人レベルとグループレベルで評価するために設計された最初のベンチマークである。
個人レベルで優れたエージェントは,集団レベルでの熟練度を示唆しない。
論文 参考訳(メタデータ) (2024-03-20T15:38:36Z) - LLM Agents in Interaction: Measuring Personality Consistency and
Linguistic Alignment in Interacting Populations of Large Language Models [4.706971067968811]
簡単な変数誘導サンプリングアルゴリズムを用いて,大規模言語モデル (LLM) エージェントの2群集団を作成する。
人格検査を行ない、共同作業にエージェントを提出し、異なるプロファイルが会話相手に対して異なるレベルの人格整合性および言語的整合性を示すことを確認する。
論文 参考訳(メタデータ) (2024-02-05T11:05:20Z) - SpeechAgents: Human-Communication Simulation with Multi-Modal
Multi-Agent Systems [53.94772445896213]
大規模言語モデル(LLM)に基づくマルチエージェントシステムは,人間の社会をシミュレートする上で有望な性能を示した。
本研究では,マルチモーダルLLMに基づくマルチエージェントシステムであるSpeechAgentsを提案する。
論文 参考訳(メタデータ) (2024-01-08T15:01:08Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
本稿では,理論的洞察を用いた実用実験により,現代NLPシステム間の協調機構を解明する。
我々は, LLMエージェントからなる4つの独特な社会をつくり, それぞれのエージェントは, 特定の特性(容易性, 過信性)によって特徴づけられ, 異なる思考パターン(議論, ふりかえり)と協調する。
以上の結果から, LLMエージェントは, 社会心理学理論を反映した, 適合性やコンセンサスリーディングといった人間的な社会的行動を示すことが明らかとなった。
論文 参考訳(メタデータ) (2023-10-03T15:05:52Z) - Generative Agents: Interactive Simulacra of Human Behavior [86.1026716646289]
生成エージェントを導入し,人間の振る舞いをシミュレートする計算ソフトウェアエージェントについて紹介する。
エージェントの経験の完全な記録を格納するために,大規模言語モデルを拡張するアーキテクチャについて述べる。
The Simsにインスパイアされた対話型サンドボックス環境に生成エージェントを投入する。
論文 参考訳(メタデータ) (2023-04-07T01:55:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。