ShadowGPT: Learning to Solve Quantum Many-Body Problems from Randomized Measurements
- URL: http://arxiv.org/abs/2411.03285v2
- Date: Tue, 19 Nov 2024 06:57:57 GMT
- Title: ShadowGPT: Learning to Solve Quantum Many-Body Problems from Randomized Measurements
- Authors: Jian Yao, Yi-Zhuang You,
- Abstract summary: We propose ShadowGPT, a novel approach for solving quantum many-body problems by learning from randomized measurement data collected from quantum experiments.
The model is a generative pretrained transformer (GPT) trained on simulated classical shadow data of ground states of quantum Hamiltonians.
- Score: 2.1946359779523332
- License:
- Abstract: We propose ShadowGPT, a novel approach for solving quantum many-body problems by learning from randomized measurement data collected from quantum experiments. The model is a generative pretrained transformer (GPT) trained on simulated classical shadow data of ground states of quantum Hamiltonians, obtained through randomized Pauli measurements. Once trained, the model can predict a range of ground state properties across the Hamiltonian parameter space. We demonstrate its effectiveness on the transverse-field Ising model and the $\mathbb{Z}_2 \times \mathbb{Z}_2$ cluster-Ising model, accurately predicting ground state energy, correlation functions, and entanglement entropy. This approach highlights the potential of combining quantum data with classical machine learning to address complex quantum many-body challenges.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A hybrid method for quantum dynamics simulation [2.6340447642310383]
We propose a hybrid approach to simulate quantum many body dynamics by combining Trotter based quantum algorithm with classical dynamic mode decomposition.
Our method predicts observables of a quantum state in the long time by using data from a set of short time measurements from a quantum computer.
arXiv Detail & Related papers (2023-07-27T23:43:13Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Provably efficient variational generative modeling of quantum many-body
systems via quantum-probabilistic information geometry [3.5097082077065003]
We introduce a generalization of quantum natural gradient descent to parameterized mixed states.
We also provide a robust first-order approximating algorithm, Quantum-Probabilistic Mirror Descent.
Our approaches extend previously sample-efficient techniques to allow for flexibility in model choice.
arXiv Detail & Related papers (2022-06-09T17:58:15Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - On Quantum Circuits for Discrete Graphical Models [1.0965065178451106]
We provide the first method that allows one to provably generate unbiased and independent samples from general discrete factor models.
Our method is compatible with multi-body interactions and its success probability does not depend on the number of variables.
Experiments with quantum simulation as well as actual quantum hardware show that our method can carry out sampling and parameter learning on quantum computers.
arXiv Detail & Related papers (2022-06-01T11:03:51Z) - Entanglement Forging with generative neural network models [0.0]
We show that a hybrid quantum-classical variational ans"atze can forge entanglement to lower quantum resource overhead.
The method is efficient in terms of the number of measurements required to achieve fixed precision on expected values of observables.
arXiv Detail & Related papers (2022-05-02T14:29:17Z) - A tensor network discriminator architecture for classification of
quantum data on quantum computers [0.0]
We demonstrate the use of matrix product state (MPS) models for discriminating quantum data on quantum computers using holographic algorithms.
We experimentally evaluate models on Quantinuum's H1-2 trapped ion quantum computer using entangled input data modeled as translationally invariant, bond 4 MPSs.
arXiv Detail & Related papers (2022-02-22T14:19:42Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.