Quantum One-Time Protection of any Randomized Algorithm
- URL: http://arxiv.org/abs/2411.03305v2
- Date: Tue, 31 Dec 2024 02:28:23 GMT
- Title: Quantum One-Time Protection of any Randomized Algorithm
- Authors: Sam Gunn, Ramis Movassagh,
- Abstract summary: A quantum one-time token is a quantum state that permits a certain program to be evaluated exactly once.<n>We propose a scheme for building quantum one-time tokens for any randomized classical program, which include generative AI models.
- Score: 0.03320194947871346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The meteoric rise in power and popularity of machine learning models dependent on valuable training data has reignited a basic tension between the power of running a program locally and the risk of exposing details of that program to the user. At the same time, fundamental properties of quantum states offer new solutions to data and program security that can require strikingly few quantum resources to exploit, and offer advantages outside of mere computational run time. In this work, we demonstrate such a solution with quantum one-time tokens. A quantum one-time token is a quantum state that permits a certain program to be evaluated exactly once. One-time security guarantees, roughly, that the token cannot be used to evaluate the program more than once. We propose a scheme for building quantum one-time tokens for any randomized classical program, which include generative AI models. We prove that the scheme satisfies an interesting definition of one-time security as long as outputs of the classical algorithm have high enough min-entropy, in a black box model. Importantly, the classical program being protected does not need to be implemented coherently on a quantum computer. In fact, the size and complexity of the quantum one-time token is independent of the program being protected, and additional quantum resources serve only to increase the security of the protocol. Due to this flexibility in adjusting the security, we believe that our proposal is parsimonious enough to serve as a promising candidate for a near-term useful demonstration of quantum computing in either the NISQ or early fault tolerant regime.
Related papers
- Quantum Computer Does Not Need Coherent Quantum Access for Advantage [0.0]
A majority of quantum speedups rely on a subroutine in which classical information can be accessed in a coherent quantum manner.
We develop a quantum gradient descent algorithm for optimization, which is a fundamental technique that enjoys a wide range of applications.
arXiv Detail & Related papers (2025-03-04T11:24:28Z) - Certified Random Number Generation using Quantum Computers [0.0]
We investigate how current quantum computers can be leveraged for practical applications.
We generate secure random numbers certified by Quantum Mechanics.
By applying this protocol to existing quantum computers, we demonstrate the feasibility of secure, semi-device-independent random number generation.
arXiv Detail & Related papers (2025-02-05T08:19:18Z) - Quantum Indistinguishable Obfuscation via Quantum Circuit Equivalence [6.769315201275599]
Quantum computing solutions are increasingly deployed in commercial environments through delegated computing.
One of the most critical issues is to guarantee the confidentiality and proprietary of quantum implementations.
Since the proposal of general-purpose indistinguishability obfuscation (iO) and functional encryption schemes, iO has emerged as a seemingly versatile cryptography primitive.
arXiv Detail & Related papers (2024-11-19T07:37:24Z) - A Quantum Automatic Tool for Finding Impossible Differentials [12.997422492640766]
We propose two quantum automatic tools for searching impossible differentials.
The proposed quantum algorithms exploit the idea of miss-in-the-middle and the properties of truncated differentials.
arXiv Detail & Related papers (2024-07-14T03:00:24Z) - A quantum annealing approach to the minimum distance problem of quantum codes [0.0]
We introduce an approach to compute the minimum distance of quantum stabilizer codes by reformulating the problem as a Quadratic Unconstrained Binary Optimization problem.
We demonstrate practical viability of our method by comparing the performance of purely classical algorithms with the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2024-04-26T21:29:42Z) - Quantum Frequential Computing: a quadratic runtime advantage for all computations [0.0]
We develop a quantum frequential computer, since the quantum speedup arises from an increase in gate frequency.
We demonstrate that only a small fraction of the computer's architecture needs to employ optimal quantum control states to realize this advantage.
arXiv Detail & Related papers (2024-03-04T19:00:02Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Quantum copy-protection of compute-and-compare programs in the quantum random oracle model [48.94443749859216]
We introduce a quantum copy-protection scheme for a class of evasive functions known as " compute-and-compare programs"
We prove that our scheme achieves non-trivial security against fully malicious adversaries in the quantum random oracle model (QROM)
As a complementary result, we show that the same scheme fulfils a weaker notion of software protection, called "secure software leasing"
arXiv Detail & Related papers (2020-09-29T08:41:53Z) - Probabilistic one-time programs using quantum entanglement [0.0]
We present an improved protocol for one-time programs that resolves major drawbacks of previous schemes.
This results in four orders of magnitude higher count rates as well the ability to execute a program long after the quantum information exchange has taken place.
We demonstrate our protocol over an underground fiber link between university buildings in downtown Vienna.
arXiv Detail & Related papers (2020-08-05T18:02:56Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z) - Forging quantum data: classically defeating an IQP-based quantum test [0.0]
We describe a classical algorithm that can convince the verifier that the (classical) prover is quantum.
We show that the key extraction algorithm is efficient in practice for problem sizes of hundreds of qubits.
arXiv Detail & Related papers (2019-12-11T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.