論文の概要: Will Trump Win in 2024? Predicting the US Presidential Election via Multi-step Reasoning with Large Language Models
- arxiv url: http://arxiv.org/abs/2411.03321v1
- Date: Mon, 21 Oct 2024 06:18:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 12:31:22.545470
- Title: Will Trump Win in 2024? Predicting the US Presidential Election via Multi-step Reasoning with Large Language Models
- Title(参考訳): トランプ氏は2024年に勝利するのか? 大規模言語モデルによる多段階推論で米大統領選を予測
- Authors: Chenxiao Yu, Zhaotian Weng, Zheng Li, Xiyang Hu, Yue Zhao,
- Abstract要約: 選挙予測は、限られた有権者レベルのデータ、急速に変化する政治情勢、複雑な人間の振る舞いをモデル化する必要性など、ユニークな課題を生んでいる。
政治分析のための多段階推論フレームワークを提案する。
われわれのアプローチは、2016年と2020年のアメリカ大統領選挙研究(ANES)の実際のデータに基づいて検証されている。
我々は,2024年アメリカ合衆国大統領選挙の結果を事前に予測するために,我々の枠組みを適用した。
- 参考スコア(独自算出の注目度): 12.939107088730513
- License:
- Abstract: Can Large Language Models (LLMs) accurately predict election outcomes? While LLMs have demonstrated impressive performance in various domains, including healthcare, legal analysis, and creative tasks, their ability to forecast elections remains unknown. Election prediction poses unique challenges, such as limited voter-level data, rapidly changing political landscapes, and the need to model complex human behavior. To address these challenges, we introduce a multi-step reasoning framework designed for political analysis. Our approach is validated on real-world data from the American National Election Studies (ANES) 2016 and 2020, as well as synthetic personas generated by the leading machine learning framework, offering scalable datasets for voter behavior modeling. To capture temporal dynamics, we incorporate candidates' policy positions and biographical details, ensuring that the model adapts to evolving political contexts. Drawing on Chain of Thought prompting, our multi-step reasoning pipeline systematically integrates demographic, ideological, and time-dependent factors, enhancing the model's predictive power. Additionally, we apply our framework to predict the outcome of the 2024 U.S. presidential election in advance, demonstrating the adaptability of LLMs to unseen political data.
- Abstract(参考訳): 大規模言語モデル(LLM)は選挙結果を正確に予測できるのか?
LLMは、医療、法的な分析、創造的なタスクなど、様々な分野で顕著なパフォーマンスを示してきたが、選挙予測能力はいまだに不明である。
選挙予測は、限られた有権者レベルのデータ、急速に変化する政治情勢、複雑な人間の振る舞いをモデル化する必要性など、ユニークな課題を生んでいる。
これらの課題に対処するために、政治分析用に設計された多段階の推論フレームワークを導入する。
我々のアプローチは、2016年と2020年のアメリカ大統領選挙研究(ANES)の実際のデータと、主要な機械学習フレームワークによって生成された合成ペルソナに基づいて検証され、投票者行動モデリングのためのスケーラブルなデータセットを提供する。
時間的ダイナミクスを捉えるため、候補者の政策位置と伝記の詳細を取り入れ、そのモデルが進化する政治状況に適応するようにした。
思考の連鎖に基づいて、我々の多段階推論パイプラインは、階層的、イデオロギー的、時間依存的な要因を体系的に統合し、モデルの予測力を高めます。
さらに,我々は,2024年アメリカ合衆国大統領選挙の結果を事前に予測するために,我々の枠組みを適用した。
関連論文リスト
- ElectionSim: Massive Population Election Simulation Powered by Large Language Model Driven Agents [70.17229548653852]
我々は,大規模言語モデルに基づく革新的な選挙シミュレーションフレームワークであるElectronSimを紹介する。
ソーシャルメディアプラットフォームからサンプリングした100万レベルの投票者プールを提示し、正確な個人シミュレーションを支援する。
PPEは、米国大統領選挙シナリオ下での我々の枠組みの性能を評価するための、世論調査に基づく大統領選挙ベンチマークである。
論文 参考訳(メタデータ) (2024-10-28T05:25:50Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
本研究は,大規模言語モデルを用いた政治サンプルのシミュレーションにおけるバイアスの同定と定量化を目的とする。
GPT-3.5-Turboモデルを用いて、米国選挙研究、ドイツ縦割り選挙研究、ズオビアオデータセット、中国家族パネル研究のデータを活用する。
論文 参考訳(メタデータ) (2024-07-16T05:52:26Z) - Can LLMs Help Predict Elections? (Counter)Evidence from the World's Largest Democracy [3.0915192911449796]
ソーシャルメディアが世論の形成にどのように影響し、政治的結果に影響を及ぼすかについての研究は、一般的な調査分野である。
本稿では,Large Language Models (LLMs) の機能を活用し,ソーシャルメディアデータを調べ,選挙結果を予測する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-13T15:13:23Z) - Classifying Human-Generated and AI-Generated Election Claims in Social Media [8.990994727335064]
悪意ある俳優はソーシャルメディアを使って誤報を広め、選挙プロセスへの信頼を損なうことがある。
LLM(Large Language Models)の出現は、悪質なアクターが前例のない規模で誤情報を生成できるようにすることによって、この問題を悪化させる。
選挙に関する主張を特徴付けるための新しい分類法を提案する。
論文 参考訳(メタデータ) (2024-04-24T18:13:29Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
選挙日前の6ヶ月の間に、1500万件の選挙関連ツイートのデータセットを使用します。
地理的属性を持つデータを用いたモデルが従来のポーリング法よりも精度と精度で選挙結果を決定することがわかった。
論文 参考訳(メタデータ) (2023-01-02T12:40:05Z) - Forecasting Future World Events with Neural Networks [68.43460909545063]
Autocastは数千の予測質問と付随するニュースコーパスを含むデータセットである。
ニュースコーパスは日付によって整理され、人間が過去の予測を行った条件を正確にシミュレートすることができる。
予測タスクで言語モデルをテストし、パフォーマンスが人間専門家のベースラインよりはるかに低いことを確認します。
論文 参考訳(メタデータ) (2022-06-30T17:59:14Z) - Electoral Forecasting Using a Novel Temporal Attenuation Model:
Predicting the US Presidential Elections [91.3755431537592]
予備選別世論調査データを用いて予測精度を向上させる新しいマクロスケール時間減衰(TA)モデルを開発した。
我々の仮説は、世論調査を公表するタイミングは、特に選挙直前の世論の変動に重要な役割を果たす、というものである。
我々は,48年間の平均予測誤差2.8-3.28点を蓄積するTAモデルの2つの異なる実装を提案する。
論文 参考訳(メタデータ) (2020-04-30T09:21:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。