Energy Price Modelling: A Comparative Evaluation of four Generations of Forecasting Methods
- URL: http://arxiv.org/abs/2411.03372v1
- Date: Tue, 05 Nov 2024 11:45:00 GMT
- Title: Energy Price Modelling: A Comparative Evaluation of four Generations of Forecasting Methods
- Authors: Alexandru-Victor Andrei, Georg Velev, Filip-Mihai Toma, Daniel Traian Pele, Stefan Lessmann,
- Abstract summary: Energy price forecasting plays an important role in supporting decision-making at various levels.
Given the evolving landscape of forecasting techniques, the literature lacks a thorough empirical comparison.
This paper provides an in-depth review of the evolution of forecasting modeling frameworks.
- Score: 45.30624270004584
- License:
- Abstract: Energy is a critical driver of modern economic systems. Accurate energy price forecasting plays an important role in supporting decision-making at various levels, from operational purchasing decisions at individual business organizations to policy-making. A significant body of literature has looked into energy price forecasting, investigating a wide range of methods to improve accuracy and inform these critical decisions. Given the evolving landscape of forecasting techniques, the literature lacks a thorough empirical comparison that systematically contrasts these methods. This paper provides an in-depth review of the evolution of forecasting modeling frameworks, from well-established econometric models to machine learning methods, early sequence learners such LSTMs, and more recent advancements in deep learning with transformer networks, which represent the cutting edge in forecasting. We offer a detailed review of the related literature and categorize forecasting methodologies into four model families. We also explore emerging concepts like pre-training and transfer learning, which have transformed the analysis of unstructured data and hold significant promise for time series forecasting. We address a gap in the literature by performing a comprehensive empirical analysis on these four family models, using data from the EU energy markets, we conduct a large-scale empirical study, which contrasts the forecasting accuracy of different approaches, focusing especially on alternative propositions for time series transformers.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - See Further for Parameter Efficient Fine-tuning by Standing on the Shoulders of Decomposition [56.87609859444084]
parameter-efficient fine-tuning (PEFT) focuses on optimizing a select subset of parameters while keeping the rest fixed, significantly lowering computational and storage overheads.
We take the first step to unify all approaches by dissecting them from a decomposition perspective.
We introduce two novel PEFT methods alongside a simple yet effective framework designed to enhance the performance of PEFT techniques across various applications.
arXiv Detail & Related papers (2024-07-07T15:44:42Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Uplift vs. predictive modeling: a theoretical analysis [1.2412255325209152]
This paper presents a comprehensive treatment of the subject, starting from firm theoretical foundations and highlighting the parameters that influence the performance of the uplift and predictive approaches.
The focus of the paper is on a binary outcome case and a binary action, and the paper presents a theoretical analysis of uplift modeling, comparing it with the classical predictive approach.
arXiv Detail & Related papers (2023-09-21T12:59:17Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
Latest methods for visual counterfactual explanations (VCE) harness the power of deep generative models to synthesize new examples of high-dimensional images of impressive quality.
It is currently difficult to compare the performance of these VCE methods as the evaluation procedures largely vary and often boil down to visual inspection of individual examples and small scale user studies.
We propose a framework for systematic, quantitative evaluation of the VCE methods and a minimal set of metrics to be used.
arXiv Detail & Related papers (2023-08-11T12:22:37Z) - Meta-Regression Analysis of Errors in Short-Term Electricity Load
Forecasting [0.0]
We present a Meta-Regression Analysis (MRA) that examines factors that influence the accuracy of short-term electricity load forecasts.
We use data from 421 forecast models published in 59 studies.
We found the LSTM approach and a combination of neural networks with other approaches to be the best forecasting methods.
arXiv Detail & Related papers (2023-05-29T18:26:51Z) - Validation Methods for Energy Time Series Scenarios from Deep Generative
Models [55.41644538483948]
A popular scenario generation approach uses deep generative models (DGM) that allow scenario generation without prior assumptions about the data distribution.
We provide a critical assessment of the currently used validation methods in the energy scenario generation literature.
We apply the four validation methods to both the historical and the generated data and discuss the interpretation of validation results as well as common mistakes, pitfalls, and limitations of the validation methods.
arXiv Detail & Related papers (2021-10-27T14:14:25Z) - Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques [2.3436632098950456]
This paper presents a review of state-of-the-art forecasting methods for smart grid (SG) systems.
Traditional point forecasting methods including statistical, machine learning (ML), and deep learning (DL) are extensively investigated.
A comparative case study using the Victorian electricity consumption and American electric power (AEP) is conducted.
arXiv Detail & Related papers (2020-11-25T09:17:07Z) - Introduction to Rare-Event Predictive Modeling for Inferential
Statisticians -- A Hands-On Application in the Prediction of Breakthrough
Patents [0.0]
We introduce a machine learning (ML) approach to quantitative analysis geared towards optimizing the predictive performance.
We discuss the potential synergies between the two fields against the backdrop of this, at first glance, target-incompatibility.
We are providing a hands-on predictive modeling introduction for a quantitative social science audience while aiming at demystifying computer science jargon.
arXiv Detail & Related papers (2020-03-30T13:06:25Z) - Profit-oriented sales forecasting: a comparison of forecasting
techniques from a business perspective [3.613072342189595]
This paper compares a large array of techniques for 35 times series that consist of both industry data from the Coca-Cola Company and publicly available datasets.
It introduces a novel and completely automated profit-driven approach that takes into account the expected profit that a technique can create during both the model building and evaluation process.
arXiv Detail & Related papers (2020-02-03T14:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.