Kernel Approximation using Analog In-Memory Computing
- URL: http://arxiv.org/abs/2411.03375v1
- Date: Tue, 05 Nov 2024 16:18:47 GMT
- Title: Kernel Approximation using Analog In-Memory Computing
- Authors: Julian Büchel, Giacomo Camposampiero, Athanasios Vasilopoulos, Corey Lammie, Manuel Le Gallo, Abbas Rahimi, Abu Sebastian,
- Abstract summary: Kernel functions are vital ingredients of several machine learning algorithms, but often incur significant memory and computational costs.
We introduce an approach to kernel approximation in machine learning algorithms suitable for mixed-signal Analog In-Memory Computing (AIMC) architectures.
- Score: 3.5231018007564203
- License:
- Abstract: Kernel functions are vital ingredients of several machine learning algorithms, but often incur significant memory and computational costs. We introduce an approach to kernel approximation in machine learning algorithms suitable for mixed-signal Analog In-Memory Computing (AIMC) architectures. Analog In-Memory Kernel Approximation addresses the performance bottlenecks of conventional kernel-based methods by executing most operations in approximate kernel methods directly in memory. The IBM HERMES Project Chip, a state-of-the-art phase-change memory based AIMC chip, is utilized for the hardware demonstration of kernel approximation. Experimental results show that our method maintains high accuracy, with less than a 1% drop in kernel-based ridge classification benchmarks and within 1% accuracy on the Long Range Arena benchmark for kernelized attention in Transformer neural networks. Compared to traditional digital accelerators, our approach is estimated to deliver superior energy efficiency and lower power consumption. These findings highlight the potential of heterogeneous AIMC architectures to enhance the efficiency and scalability of machine learning applications.
Related papers
- MIK: Modified Isolation Kernel for Biological Sequence Visualization, Classification, and Clustering [3.9146761527401424]
This research proposes a novel approach called the Modified Isolation Kernel (MIK) as an alternative to the Gaussian kernel.
MIK uses adaptive density estimation to capture local structures more accurately and integrates robustness measures.
It exhibits improved preservation of the local and global structure and enables better visualization of clusters and subclusters in the embedded space.
arXiv Detail & Related papers (2024-10-21T06:57:09Z) - Accelerating TinyML Inference on Microcontrollers through Approximate Kernels [3.566060656925169]
In this work, we combine approximate computing and software kernel design to accelerate the inference of approximate CNN models on microcontrollers.
Our evaluation on an STM32-Nucleo board and 2 popular CNNs trained on the CIFAR-10 dataset shows that, compared to state-of-the-art exact inference, our solutions can feature on average 21% latency reduction.
arXiv Detail & Related papers (2024-09-25T11:10:33Z) - Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
Current on-device training methods just focus on efficient training without considering the catastrophic forgetting.
This paper proposes a simple but effective edge-friendly incremental learning framework.
Our method achieves average accuracy boost of 38.08% with even less memory and approximate computation.
arXiv Detail & Related papers (2024-06-13T05:49:29Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Scalable Optimal Margin Distribution Machine [50.281535710689795]
Optimal margin Distribution Machine (ODM) is a newly proposed statistical learning framework rooting in the novel margin theory.
This paper proposes a scalable ODM, which can achieve nearly ten times speedup compared to the original ODM training method.
arXiv Detail & Related papers (2023-05-08T16:34:04Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Kernel Identification Through Transformers [54.3795894579111]
Kernel selection plays a central role in determining the performance of Gaussian Process (GP) models.
This work addresses the challenge of constructing custom kernel functions for high-dimensional GP regression models.
We introduce a novel approach named KITT: Kernel Identification Through Transformers.
arXiv Detail & Related papers (2021-06-15T14:32:38Z) - Memory and Computation-Efficient Kernel SVM via Binary Embedding and
Ternary Model Coefficients [18.52747917850984]
Kernel approximation is widely used to scale up kernel SVM training and prediction.
Memory and computation costs of kernel approximation models are still too high if we want to deploy them on memory-limited devices.
We propose a novel memory and computation-efficient kernel SVM model by using both binary embedding and binary model coefficients.
arXiv Detail & Related papers (2020-10-06T09:41:54Z) - Towards automated kernel selection in machine learning systems: A SYCL
case study [0.0]
We present initial results using machine learning to select kernels in a case study deploying high performance SYCL kernels in libraries.
By combining auto-tuning and machine learning these kernel selection processes can be deployed with little developer effort to achieve high performance on new hardware.
arXiv Detail & Related papers (2020-03-15T11:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.