Enhancing Maritime Situational Awareness through End-to-End Onboard Raw Data Analysis
- URL: http://arxiv.org/abs/2411.03403v1
- Date: Tue, 05 Nov 2024 18:38:42 GMT
- Title: Enhancing Maritime Situational Awareness through End-to-End Onboard Raw Data Analysis
- Authors: Roberto Del Prete, Manuel Salvoldi, Domenico Barretta, Nicolas Longépé, Gabriele Meoni, Arnon Karnieli, Maria Daniela Graziano, Alfredo Renga,
- Abstract summary: This research presents a framework addressing the strict bandwidth, energy, and latency constraints of small satellites.
It investigates the application of deep learning techniques for direct ship detection and classification from raw satellite imagery.
By simplifying the onboard processing chain, our approach facilitates direct analyses without requiring computationally intensive steps such as calibration and ortho-rectification.
- Score: 4.441792803766689
- License:
- Abstract: Satellite-based onboard data processing is crucial for time-sensitive applications requiring timely and efficient rapid response. Advances in edge artificial intelligence are shifting computational power from ground-based centers to on-orbit platforms, transforming the "sensing-communication-decision-feedback" cycle and reducing latency from acquisition to delivery. The current research presents a framework addressing the strict bandwidth, energy, and latency constraints of small satellites, focusing on maritime monitoring. The study contributes three main innovations. Firstly, it investigates the application of deep learning techniques for direct ship detection and classification from raw satellite imagery. By simplifying the onboard processing chain, our approach facilitates direct analyses without requiring computationally intensive steps such as calibration and ortho-rectification. Secondly, to address the scarcity of raw satellite data, we introduce two novel datasets, VDS2Raw and VDV2Raw, which are derived from raw data from Sentinel-2 and Vegetation and Environment Monitoring New Micro Satellite (VENuS) missions, respectively, and enriched with Automatic Identification System (AIS) records. Thirdly, we characterize the tasks' optimal single and multiple spectral band combinations through statistical and feature-based analyses validated on both datasets. In sum, we demonstrate the feasibility of the proposed method through a proof-of-concept on CubeSat-like hardware, confirming the models' potential for operational satellite-based maritime monitoring.
Related papers
- Infrared Small Target Detection in Satellite Videos: A New Dataset and A Novel Recurrent Feature Refinement Framework [20.72563526645679]
IRSatVideo-LEO is a semi-simulated dataset with synthesized satellite motion, target appearance, trajectory and intensity.
RFR is proposed to be equipped with existing powerful CNN-based methods for long-term temporal dependency exploitation.
arXiv Detail & Related papers (2024-09-19T03:58:32Z) - Scale-Translation Equivariant Network for Oceanic Internal Solitary Wave Localization [7.444865250744234]
Internal solitary waves (ISWs) are gravity waves that are often observed in the interior ocean rather than the surface.
Cloud cover in optical remote sensing images variably obscures ground information, leading to blurred or missing surface observations.
This paper aims at altimeter-based machine learning solutions to automatically locate ISWs.
arXiv Detail & Related papers (2024-06-18T21:09:56Z) - Cooperative Federated Learning over Ground-to-Satellite Integrated
Networks: Joint Local Computation and Data Offloading [33.44828515877944]
We propose a ground-to-satellite cooperative federated learning (FL) methodology to facilitate machine learning service management over remote regions.
Our methodology orchestrates satellite constellations to provide the following key functions during FL.
We show that our methodology can significantly speed up the convergence of FL compared with terrestrial-only and other satellite baseline approaches.
arXiv Detail & Related papers (2023-12-23T22:09:31Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge
TPU [58.720142291102135]
In this paper we propose a pose estimation software exploiting neural network architectures.
We show how low power machine learning accelerators could enable Artificial Intelligence exploitation in space.
arXiv Detail & Related papers (2022-04-07T08:53:18Z) - Towards On-Board Panoptic Segmentation of Multispectral Satellite Images [41.34294145237618]
We propose a lightweight pipeline for on-board panoptic segmentation of multi-spectral satellite images.
Panoptic segmentation offers major economic and environmental insights, ranging from yield estimation from agricultural lands to intelligence for complex military applications.
Our evaluations demonstrate a substantial increase in accuracy metrics compared to the existing state-of-the-art models.
arXiv Detail & Related papers (2022-04-05T03:10:39Z) - Unsupervised Change Detection of Extreme Events Using ML On-Board [3.1955314117075715]
We introduce RaVAEn, a lightweight, unsupervised approach for change detection in satellite data based on Variational Auto-Encoders (VAEs)
RaVAEn pre-processes the sampled data directly on the satellite and flags changed areas to shorten downlink, the response time.
We verified the efficacy of our system on a dataset composed of time series of catastrophic events.
arXiv Detail & Related papers (2021-11-04T16:45:15Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Efficient and Robust LiDAR-Based End-to-End Navigation [132.52661670308606]
We present an efficient and robust LiDAR-based end-to-end navigation framework.
We propose Fast-LiDARNet that is based on sparse convolution kernel optimization and hardware-aware model design.
We then propose Hybrid Evidential Fusion that directly estimates the uncertainty of the prediction from only a single forward pass.
arXiv Detail & Related papers (2021-05-20T17:52:37Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.