Cooperative Federated Learning over Ground-to-Satellite Integrated
Networks: Joint Local Computation and Data Offloading
- URL: http://arxiv.org/abs/2312.15361v1
- Date: Sat, 23 Dec 2023 22:09:31 GMT
- Title: Cooperative Federated Learning over Ground-to-Satellite Integrated
Networks: Joint Local Computation and Data Offloading
- Authors: Dong-Jun Han, Seyyedali Hosseinalipour, David J. Love, Mung Chiang,
Christopher G. Brinton
- Abstract summary: We propose a ground-to-satellite cooperative federated learning (FL) methodology to facilitate machine learning service management over remote regions.
Our methodology orchestrates satellite constellations to provide the following key functions during FL.
We show that our methodology can significantly speed up the convergence of FL compared with terrestrial-only and other satellite baseline approaches.
- Score: 33.44828515877944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While network coverage maps continue to expand, many devices located in
remote areas remain unconnected to terrestrial communication infrastructures,
preventing them from getting access to the associated data-driven services. In
this paper, we propose a ground-to-satellite cooperative federated learning
(FL) methodology to facilitate machine learning service management over remote
regions. Our methodology orchestrates satellite constellations to provide the
following key functions during FL: (i) processing data offloaded from ground
devices, (ii) aggregating models within device clusters, and (iii) relaying
models/data to other satellites via inter-satellite links (ISLs). Due to the
limited coverage time of each satellite over a particular remote area, we
facilitate satellite transmission of trained models and acquired data to
neighboring satellites via ISL, so that the incoming satellite can continue
conducting FL for the region. We theoretically analyze the convergence behavior
of our algorithm, and develop a training latency minimizer which optimizes over
satellite-specific network resources, including the amount of data to be
offloaded from ground devices to satellites and satellites' computation speeds.
Through experiments on three datasets, we show that our methodology can
significantly speed up the convergence of FL compared with terrestrial-only and
other satellite baseline approaches.
Related papers
- SatFed: A Resource-Efficient LEO Satellite-Assisted Heterogeneous Federated Learning Framework [19.59862482196897]
We propose SatFed, a resource-efficient satellite-assisted heterogeneous FL framework.
SatFed implements freshness-based model prioritization queues to optimize the use of highly constrained satellite-ground bandwidth.
Experiments with real-world LEO satellite networks demonstrate that SatFed achieves superior performance and robustness compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-09-20T13:44:00Z) - Leveraging Large Language Models for Integrated Satellite-Aerial-Terrestrial Networks: Recent Advances and Future Directions [47.791246017237]
Integrated satellite, aerial, and terrestrial networks (ISATNs) represent a sophisticated convergence of diverse communication technologies.
This paper explores the transformative potential of integrating Large Language Models (LLMs) into ISATNs.
arXiv Detail & Related papers (2024-07-05T15:23:43Z) - Satellite Federated Edge Learning: Architecture Design and Convergence Analysis [47.057886812985984]
This paper introduces a novel FEEL algorithm, named FEDMEGA, tailored to mega-constellation networks.
By integrating inter-satellite links (ISL) for intra-orbit model aggregation, the proposed algorithm significantly reduces the usage of low data rate and intermittent GSL.
Our proposed method includes a ring all-reduce based intra-orbit aggregation mechanism, coupled with a network flow-based transmission scheme for global model aggregation.
arXiv Detail & Related papers (2024-04-02T11:59:58Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
A large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX.
Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc.
We propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites.
arXiv Detail & Related papers (2023-11-02T14:47:06Z) - Over-the-Air Federated Learning in Satellite systems [0.0]
Federated learning in satellites offers several advantages.
It ensures data privacy and security, as sensitive data remains on the satellites and is not transmitted to a central location.
By leveraging federated learning, satellites can collaborate and continuously improve their machine learning models.
arXiv Detail & Related papers (2023-06-05T16:06:39Z) - Federated learning for LEO constellations via inter-HAP links [0.0]
Low Earth Obit (LEO) satellite constellations have seen a sharp increase of deployment in recent years.
To apply machine learning (ML) in such applications, the traditional way of downloading satellite data such as imagery to a ground station (GS) is not desirable.
We show that existing FL solutions do not fit well in such LEO constellation scenarios because of significant challenges such as excessive convergence delay and unreliable wireless channels.
arXiv Detail & Related papers (2022-05-15T08:22:52Z) - Learning Emergent Random Access Protocol for LEO Satellite Networks [51.575090080749554]
We propose a novel grant-free random access solution for LEO SAT networks, dubbed emergent random access channel protocol (eRACH)
eRACH is a model-free approach that emerges through interaction with the non-stationary network environment.
Compared to RACH, we show from various simulations that our proposed eRACH yields 54.6% higher average network throughput.
arXiv Detail & Related papers (2021-12-03T07:44:45Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.