論文の概要: Uncertainty Quantification for Clinical Outcome Predictions with (Large) Language Models
- arxiv url: http://arxiv.org/abs/2411.03497v1
- Date: Tue, 05 Nov 2024 20:20:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:51.238118
- Title: Uncertainty Quantification for Clinical Outcome Predictions with (Large) Language Models
- Title(参考訳): 言語モデルを用いた臨床結果予測の不確かさの定量化
- Authors: Zizhang Chen, Peizhao Li, Xiaomeng Dong, Pengyu Hong,
- Abstract要約: ホワイトボックスおよびブラックボックス設定におけるEMHタスクに対するLMの不確実性定量化について検討する。
EHRにおけるマルチタスクとアンサンブル手法を用いることで,モデル不確実性を効果的に低減できることを示す。
6,000名以上の患者から得られた縦断的臨床データを10種類の臨床予測タスクで検証した。
- 参考スコア(独自算出の注目度): 10.895429855778747
- License:
- Abstract: To facilitate healthcare delivery, language models (LMs) have significant potential for clinical prediction tasks using electronic health records (EHRs). However, in these high-stakes applications, unreliable decisions can result in high costs due to compromised patient safety and ethical concerns, thus increasing the need for good uncertainty modeling of automated clinical predictions. To address this, we consider the uncertainty quantification of LMs for EHR tasks in white- and black-box settings. We first quantify uncertainty in white-box models, where we can access model parameters and output logits. We show that an effective reduction of model uncertainty can be achieved by using the proposed multi-tasking and ensemble methods in EHRs. Continuing with this idea, we extend our approach to black-box settings, including popular proprietary LMs such as GPT-4. We validate our framework using longitudinal clinical data from more than 6,000 patients in ten clinical prediction tasks. Results show that ensembling methods and multi-task prediction prompts reduce uncertainty across different scenarios. These findings increase the transparency of the model in white-box and black-box settings, thus advancing reliable AI healthcare.
- Abstract(参考訳): 医療提供を容易にするために、言語モデル(LM)は電子健康記録(EHR)を用いた臨床予測タスクに有意な可能性を秘めている。
しかし、これらの高信頼のアプリケーションでは、患者の安全性と倫理的懸念が損なわれ、信頼性の低い決定が高コストとなるため、自動化された臨床予測の不確実性モデリングの必要性が高まっている。
これを解決するために,白黒ボックス設定におけるEMHタスクに対するLMの不確実性定量化について検討する。
まず、ホワイトボックスモデルで不確実性を定量化し、モデルパラメータや出力ロジットにアクセスできます。
EHRにおけるマルチタスクとアンサンブル手法を用いることで,モデル不確実性を効果的に低減できることを示す。
このアイデアを継続して、GPT-4のような一般的なプロプライエタリなLMを含むブラックボックス設定にアプローチを拡張します。
6,000名以上の患者から得られた縦断的臨床データを10種類の臨床予測タスクで検証した。
その結果,アンサンブル手法とマルチタスク予測により,異なるシナリオ間の不確実性を低減することが示唆された。
これらの発見は、ホワイトボックスとブラックボックスの設定におけるモデルの透明性を高め、信頼性の高いAIヘルスケアを向上させる。
関連論文リスト
- Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Ethical considerations of use of hold-out sets in clinical prediction model management [0.4194295877935868]
我々は、善意、非正当性、自律性、正義の倫理的原則に焦点をあてる。
また,様々なホールドアウトセットサンプリング手法による統計的問題についても論じる。
論文 参考訳(メタデータ) (2024-06-05T11:42:46Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Mixed-Integer Projections for Automated Data Correction of EMRs Improve
Predictions of Sepsis among Hospitalized Patients [7.639610349097473]
本稿では,領域制約として臨床専門知識をシームレスに統合する革新的プロジェクションに基づく手法を提案する。
我々は、患者データの健全な範囲を規定する制約から補正されたデータの距離を測定する。
AUROCは0.865で、精度は0.922で、従来のMLモデルを上回る。
論文 参考訳(メタデータ) (2023-08-21T15:14:49Z) - Improving Trustworthiness of AI Disease Severity Rating in Medical
Imaging with Ordinal Conformal Prediction Sets [0.7734726150561088]
統計的に厳密な不確実性定量化の欠如は、AI結果の信頼を損なう重要な要因である。
分布自由不確実性定量化の最近の進歩は、これらの問題に対する実用的な解決策である。
本稿では, 正しい狭窄の重症度を含むことが保証される順序予測セットを形成する手法を実証する。
論文 参考訳(メタデータ) (2022-07-05T18:01:20Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - Literature-Augmented Clinical Outcome Prediction [10.46990394710927]
EBMとAIベースの臨床モデルとのギャップを埋める技術を導入する。
集中治療(ICU)患者情報に基づいて患者固有の文献を自動的に検索するシステムを提案する。
我々のモデルは,最近の強靭なベースラインと比較して,3つの課題に対する予測精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-11-16T11:19:02Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。