論文の概要: Forecasting Outside the Box: Application-Driven Optimal Pointwise Forecasts for Stochastic Optimization
- arxiv url: http://arxiv.org/abs/2411.03520v3
- Date: Tue, 28 Oct 2025 04:54:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-29 20:04:43.705028
- Title: Forecasting Outside the Box: Application-Driven Optimal Pointwise Forecasts for Stochastic Optimization
- Title(参考訳): ボックス外での予測:確率最適化のためのアプリケーション駆動の最適ポイントワイズ予測
- Authors: Tito Homem-de-Mello, Juan Valencia, Felipe Lagos, Guido Lagos,
- Abstract要約: 軽微な仮定の下では、この問題は一つのシナリオで解決できることを示します。
一般に最適なシナリオを見つけることは難しいが、文脈情報を用いた最適化問題では特に有用であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study a class of two-stage stochastic programs, namely, those with fixed recourse matrix and fixed costs, and linear second stage. We show that, under mild assumptions, the problem can be solved with just one scenario, which we call an ``optimal scenario.'' Such a scenario does not have to be unique and may fall outside the support of the underlying distribution. Although finding an optimal scenario in general might be hard, we show that the result can be particularly useful in the case of stochastic optimization problems with contextual information, where the goal is to optimize the expected value of a certain function given some contextual information (e.g., previous demand, customer type, etc.) that accompany the main data of interest. The contextual information allows for a better estimation of the quantity of interest via machine learning methods. We focus on a class of learning methods -- sometimes called in the literature decision-focused learning -- that integrate the learning and optimization procedures by means of a bilevel optimization formulation, which determines the parameters for pointwise forecasts. By using the optimal scenario result, we prove that when such models are applied to the class of contextual two-stage problems considered in this paper, the pointwise forecasts computed from the bilevel optimization formulation actually yield asymptotically the best approximation of an optimal scenario within the modeler's pre-specified set of parameterized forecast functions. Numerical results conducted with inventory problems from the literature (with synthetic data) as well as a bike-sharing problem with real data demonstrate that the proposed approach performs well when compared to benchmark methods from the literature.
- Abstract(参考訳): 本研究では,2段階確率プログラムのクラス,すなわち,固定されたリコース行列と固定コストを持つプログラム,および線形第二段階について検討する。
軽微な仮定では、その問題はたった一つのシナリオで解決できることを示し、それを ``最適シナリオ' と呼ぶ。
「'」このようなシナリオはユニークでなくても、基礎となるディストリビューションのサポートから外れる可能性がある。
一般に最適なシナリオを見つけることは難しいが,関心の主データに付随するいくつかのコンテキスト情報(例えば,以前の需要,顧客タイプなど)を与えられた関数の期待値を最適化することが目的である,文脈情報による確率的最適化問題において特に有用であることを示す。
文脈情報により、機械学習手法による興味の量をより正確に推定することができる。
我々は、二段階最適化の定式化によって学習と最適化の手順を統合する学習方法のクラスに焦点を当て、ポイントワイズ予測のパラメータを決定する。
最適シナリオ結果を用いて、このようなモデルが文脈的二段階問題のクラスに適用された場合、二段階最適化の定式化から計算されたポイントワイド予測が、モデラーの予め指定されたパラメータ化予測関数の集合の中で、最適なシナリオの漸近的に最良の近似をもたらすことを証明した。
文献からの在庫問題(合成データを含む)と実データによる自転車共有問題から得られた数値結果は,文献のベンチマーク手法と比較して提案手法が良好に動作することを示す。
関連論文リスト
- Probabilistic Iterative Hard Thresholding for Sparse Learning [2.5782973781085383]
本稿では,基本性制約を用いた予測目標最適化問題の解法を提案する。
基礎となるプロセスの収束を証明し、2つの機械学習問題における性能を実証する。
論文 参考訳(メタデータ) (2024-09-02T18:14:45Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
最近の構造化学習手法のストリームは、様々な最適化問題に対する技術の実践的状態を改善している。
鍵となる考え方は、インスタンスを別々に扱うのではなく、インスタンス上の統計分布を利用することだ。
本稿では,最適化を容易にし,一般化誤差を改善するポリシを摂動することでリスクを円滑にする手法について検討する。
論文 参考訳(メタデータ) (2024-07-24T12:00:30Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - It's All in the Mix: Wasserstein Machine Learning with Mixed Features [5.739657897440173]
混合機能問題の解法として,実用的なアルゴリズムを提案する。
提案手法は, 個々の特徴が存在する場合の既存手法を著しく上回りうることを示す。
論文 参考訳(メタデータ) (2023-12-19T15:15:52Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - Maximum Optimality Margin: A Unified Approach for Contextual Linear
Programming and Inverse Linear Programming [10.06803520598035]
我々は、下流最適化の最適条件によって機械学習損失関数が機能する最大最適マージンと呼ばれる問題に対する新しいアプローチを開発する。
論文 参考訳(メタデータ) (2023-01-26T17:53:38Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
我々は、意思決定プロセスを明らかにするために、事前の意思決定データを使用する逆問題を考える。
この統計的学習問題は、データ駆動逆最適化と呼ばれる。
そこで本稿では,大規模問題を解くために,効率的なブロック座標降下に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-27T12:52:56Z) - Bilevel Optimization for Feature Selection in the Data-Driven Newsvendor
Problem [8.281391209717105]
本稿では、意思決定者が過去のデータにアクセス可能な機能ベースのニュースベンダー問題について検討する。
そこで本研究では,スパースモデル,説明可能なモデル,およびアウト・オブ・サンプル性能の改善を目的とした特徴選択について検討する。
本稿では,2レベルプログラムに対する混合整数線形プログラムの修正について述べる。
論文 参考訳(メタデータ) (2022-09-12T08:52:26Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Careful! Training Relevance is Real [0.7742297876120561]
我々は、トレーニングの妥当性を強制するために設計された制約を提案する。
提案した制約を加えることで,ソリューションの品質が大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-01-12T11:54:31Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Interior Point Solving for LP-based prediction+optimisation [14.028706088791473]
線形プログラミングのインテリア・ポイント・ソルバで広く使われているような、より原理化された対数障壁項の使用について検討する。
我々の手法は、Willerらの最先端QPTL(Quadratic Programming Task Los)とElmachtoubとGrigasのSPOアプローチよりも優れている。
論文 参考訳(メタデータ) (2020-10-26T23:05:21Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。