Exploring the Potentials and Challenges of Using Large Language Models for the Analysis of Transcriptional Regulation of Long Non-coding RNAs
- URL: http://arxiv.org/abs/2411.03522v1
- Date: Tue, 05 Nov 2024 21:57:38 GMT
- Title: Exploring the Potentials and Challenges of Using Large Language Models for the Analysis of Transcriptional Regulation of Long Non-coding RNAs
- Authors: Wei Wang, Zhichao Hou, Xiaorui Liu, Xinxia Peng,
- Abstract summary: Long non-coding RNAs (lncRNAs) play critical roles in gene regulation and disease mechanisms.
The complexity and diversity of lncRNA sequences, along with the limited knowledge of their functional mechanisms and the regulation of their expressions, pose significant challenges to lncRNA studies.
- Score: 12.790491293672632
- License:
- Abstract: Research on long non-coding RNAs (lncRNAs) has garnered significant attention due to their critical roles in gene regulation and disease mechanisms. However, the complexity and diversity of lncRNA sequences, along with the limited knowledge of their functional mechanisms and the regulation of their expressions, pose significant challenges to lncRNA studies. Given the tremendous success of large language models (LLMs) in capturing complex dependencies in sequential data, this study aims to systematically explore the potential and limitations of LLMs in the sequence analysis related to the transcriptional regulation of lncRNA genes. Our extensive experiments demonstrated promising performance of fine-tuned genome foundation models on progressively complex tasks. Furthermore, we conducted an insightful analysis of the critical impact of task complexity, model selection, data quality, and biological interpretability for the studies of the regulation of lncRNA gene expression.
Related papers
- Character-level Tokenizations as Powerful Inductive Biases for RNA Foundational Models [0.0]
understanding and predicting RNA behavior is a challenge due to the complexity of RNA structures and interactions.
Current RNA models have yet to match the performance observed in the protein domain.
ChaRNABERT is able to reach state-of-the-art performance on several tasks in established benchmarks.
arXiv Detail & Related papers (2024-11-05T21:56:16Z) - Comprehensive benchmarking of large language models for RNA secondary structure prediction [0.0]
RNA-LLM uses large datasets of RNA sequences to learn, in a self-supervised way, how to represent each RNA base with a semantically rich numerical vector.
Among them, predicting the secondary structure is a fundamental task for uncovering RNA functional mechanisms.
We present a comprehensive experimental analysis of several pre-trained RNA-LLM, comparing them for the RNA secondary structure prediction task in a unified deep learning framework.
arXiv Detail & Related papers (2024-10-21T17:12:06Z) - RNACG: A Universal RNA Sequence Conditional Generation model based on Flow-Matching [0.0]
We develop a universal RNA sequence generation model based on flow matching, namely RNACG.
RNACG can accommodate various conditional inputs and is portable, enabling users to customize the encoding network for conditional inputs.
RNACG exhibits extensive applicability in sequence generation and property prediction tasks.
arXiv Detail & Related papers (2024-07-29T09:46:46Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).
First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.
Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.
Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Causal Inference in Gene Regulatory Networks with GFlowNet: Towards
Scalability in Large Systems [87.45270862120866]
We introduce Swift-DynGFN as a novel framework that enhances causal structure learning in GRNs.
Specifically, Swift-DynGFN exploits gene-wise independence to boost parallelization and to lower computational cost.
arXiv Detail & Related papers (2023-10-05T14:59:19Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Application of Deep Learning on Single-Cell RNA-sequencing Data
Analysis: A Review [17.976898403296275]
Single-cell RNA-sequencing (scRNA-seq) has become a routinely used technique to quantify the gene expression profile of thousands of single cells simultaneously.
Deep learning, a recent advance of artificial intelligence, has also emerged as a promising tool for scRNA-seq data analysis.
arXiv Detail & Related papers (2022-10-11T17:07:22Z) - Gene Regulatory Network Inference with Latent Force Models [1.2691047660244335]
Delays in protein synthesis cause a confounding effect when constructing Gene Regulatory Networks (GRNs) from RNA-sequencing time-series data.
We present a model which incorporates translation delays by combining mechanistic equations and Bayesian approaches to fit to experimental data.
arXiv Detail & Related papers (2020-10-06T09:03:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.