SEGMN: A Structure-Enhanced Graph Matching Network for Graph Similarity Learning
- URL: http://arxiv.org/abs/2411.03624v1
- Date: Wed, 06 Nov 2024 02:45:16 GMT
- Title: SEGMN: A Structure-Enhanced Graph Matching Network for Graph Similarity Learning
- Authors: Wenjun Wang, Jiacheng Lu, Kejia Chen, Zheng Liu, Shilong Sang,
- Abstract summary: Graph similarity computation (GSC) aims to quantify the similarity score between two graphs.
We propose a structure-enhanced graph matching network (SEGMN)
The dual embedding learning module incorporates adjacent edge representation into each node to achieve a structure-enhanced representation.
The structure perception matching module achieves cross-graph structure enhancement through assignment graph convolution.
- Score: 4.506862318909861
- License:
- Abstract: Graph similarity computation (GSC) aims to quantify the similarity score between two graphs. Although recent GSC methods based on graph neural networks (GNNs) take advantage of intra-graph structures in message passing, few of them fully utilize the structures presented by edges to boost the representation of their connected nodes. Moreover, previous cross-graph node embedding matching lacks the perception of the overall structure of the graph pair, due to the fact that the node representations from GNNs are confined to the intra-graph structure, causing the unreasonable similarity score. Intuitively, the cross-graph structure represented in the assignment graph is helpful to rectify the inappropriate matching. Therefore, we propose a structure-enhanced graph matching network (SEGMN). Equipped with a dual embedding learning module and a structure perception matching module, SEGMN achieves structure enhancement in both embedding learning and cross-graph matching. The dual embedding learning module incorporates adjacent edge representation into each node to achieve a structure-enhanced representation. The structure perception matching module achieves cross-graph structure enhancement through assignment graph convolution. The similarity score of each cross-graph node pair can be rectified by aggregating messages from structurally relevant node pairs. Experimental results on benchmark datasets demonstrate that SEGMN outperforms the state-of-the-art GSC methods in the GED regression task, and the structure perception matching module is plug-and-play, which can further improve the performance of the baselines by up to 25%.
Related papers
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
Graph structure learning allows refining the input graph by adding missing links and removing spurious connections.
Previous endeavors in graph structure learning have predominantly centered around supervised settings.
We propose a novel method called textbfhomophily-enhanced structure textbflearning for graph clustering (HoLe)
arXiv Detail & Related papers (2023-08-10T02:53:30Z) - Graph Spectral Embedding using the Geodesic Betweeness Centrality [76.27138343125985]
We introduce the Graph Sylvester Embedding (GSE), an unsupervised graph representation of local similarity, connectivity, and global structure.
GSE uses the solution of the Sylvester equation to capture both network structure and neighborhood proximity in a single representation.
arXiv Detail & Related papers (2022-05-07T04:11:23Z) - GraphDCA -- a Framework for Node Distribution Comparison in Real and
Synthetic Graphs [72.51835626235368]
We argue that when comparing two graphs, the distribution of node structural features is more informative than global graph statistics.
We present GraphDCA - a framework for evaluating similarity between graphs based on the alignment of their respective node representation sets.
arXiv Detail & Related papers (2022-02-08T14:19:19Z) - SIGMA: A Structural Inconsistency Reducing Graph Matching Algorithm [21.1095092767297]
We propose a novel criterion to measure the graph matching accuracy, structural inconsistency (SI)
Specifically, SI incorporates the heat diffusion wavelet to accommodate the multi-hop structure of the graphs.
We show that SIGMA can be derived by using a mirror descent method to solve the Gromov-Wasserstein distance with a novel K-hop-structure-based matching costs.
arXiv Detail & Related papers (2022-02-06T15:18:37Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
We propose a joint emphgraph learning and matching network, named GLAM, to explore reliable graph structures for boosting graph matching.
The proposed method is evaluated on three popular visual matching benchmarks (Pascal VOC, Willow Object and SPair-71k)
It outperforms previous state-of-the-art graph matching methods by significant margins on all benchmarks.
arXiv Detail & Related papers (2021-09-01T08:24:02Z) - SLGCN: Structure Learning Graph Convolutional Networks for Graphs under
Heterophily [5.619890178124606]
We propose a structure learning graph convolutional networks (SLGCNs) to alleviate the issue from two aspects.
Specifically, we design a efficient-spectral-clustering with anchors (ESC-ANCH) approach to efficiently aggregate feature representations from all similar nodes.
Experimental results on a wide range of benchmark datasets illustrate that the proposed SLGCNs outperform the stat-of-the-art GNN counterparts.
arXiv Detail & Related papers (2021-05-28T13:00:38Z) - Graph Attention Networks with Positional Embeddings [7.552100672006174]
Graph Neural Networks (GNNs) are deep learning methods which provide the current state of the art performance in node classification tasks.
We propose a framework, termed Graph Attentional Networks with Positional Embeddings (GAT-POS), to enhance GATs with positional embeddings.
We show that GAT-POS reaches remarkable improvement compared to strong GNN baselines and recent structural embedding enhanced GNNs on non-homophilic graphs.
arXiv Detail & Related papers (2021-05-09T22:13:46Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
Graph Neural Networks (GNNs) explore the graph structure and node features by aggregating and transforming information within node neighborhoods.
We propose SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure.
We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs.
arXiv Detail & Related papers (2020-11-19T04:18:01Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.