論文の概要: Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey
- arxiv url: http://arxiv.org/abs/2411.03688v1
- Date: Wed, 06 Nov 2024 06:14:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:32.191368
- Title: Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey
- Title(参考訳): 意図しないニューラル表現はどこに立つか? : 技術とパフォーマンスに関する調査
- Authors: Amer Essakine, Yanqi Cheng, Chun-Wun Cheng, Lipei Zhang, Zhongying Deng, Lei Zhu, Carola-Bibiane Schönlieb, Angelica I Aviles-Rivero,
- Abstract要約: Inlicit Neural Representation (INR) は知識表現のパラダイムとして登場した。
INRは、データを連続的な暗黙の関数としてモデル化するために多層パーセプトロン(MLP)を利用する。
この調査では、アクティベーション機能、位置エンコーディング、統合戦略、ネットワーク構造という4つの重要な領域に分類する明確な分類法を紹介した。
- 参考スコア(独自算出の注目度): 16.89460694470542
- License:
- Abstract: Implicit Neural Representations (INRs) have emerged as a paradigm in knowledge representation, offering exceptional flexibility and performance across a diverse range of applications. INRs leverage multilayer perceptrons (MLPs) to model data as continuous implicit functions, providing critical advantages such as resolution independence, memory efficiency, and generalisation beyond discretised data structures. Their ability to solve complex inverse problems makes them particularly effective for tasks including audio reconstruction, image representation, 3D object reconstruction, and high-dimensional data synthesis. This survey provides a comprehensive review of state-of-the-art INR methods, introducing a clear taxonomy that categorises them into four key areas: activation functions, position encoding, combined strategies, and network structure optimisation. We rigorously analyse their critical properties, such as full differentiability, smoothness, compactness, and adaptability to varying resolutions while also examining their strengths and limitations in addressing locality biases and capturing fine details. Our experimental comparison offers new insights into the trade-offs between different approaches, showcasing the capabilities and challenges of the latest INR techniques across various tasks. In addition to identifying areas where current methods excel, we highlight key limitations and potential avenues for improvement, such as developing more expressive activation functions, enhancing positional encoding mechanisms, and improving scalability for complex, high-dimensional data. This survey serves as a roadmap for researchers, offering practical guidance for future exploration in the field of INRs. We aim to foster new methodologies by outlining promising research directions for INRs and applications.
- Abstract(参考訳): Implicit Neural Representations (INR) は知識表現のパラダイムとして登場し、様々なアプリケーションにまたがる優れた柔軟性とパフォーマンスを提供する。
INRは、データを連続的な暗黙の関数としてモデル化するために多層パーセプトロン(MLP)を利用する。
複雑な逆問題を解決する能力は、音声再構成、画像表現、3Dオブジェクト再構成、高次元データ合成といったタスクに特に有効である。
この調査は、最先端のINR手法を包括的にレビューし、アクティベーション機能、位置エンコーディング、統合戦略、ネットワーク構造最適化の4つの重要な領域に分類する明確な分類法を導入する。
完全微分可能性、滑らか性、コンパクト性、様々な解像度への適応性など、それらの重要な特性を厳格に分析し、局所性バイアスに対処し、詳細を捉える際の強さと限界について検討する。
実験的な比較によって、異なるアプローチ間のトレードオフに関する新たな洞察が得られ、さまざまなタスクにわたる最新のINR技術の能力と課題が示されます。
現在の手法が優れている領域の特定に加えて、より表現力のあるアクティベーション関数の開発、位置符号化機構の強化、複雑な高次元データのスケーラビリティ向上など、改善のための重要な制限と潜在的手段を強調している。
この調査は研究者のロードマップとして役立ち、INRの分野における将来の探査のための実践的なガイダンスを提供する。
我々は、INRと応用のための有望な研究方向性を概説し、新しい方法論の育成を目指す。
関連論文リスト
- Improving Neural Surface Reconstruction with Feature Priors from Multi-View Image [87.00660347447494]
ニューラルサーフェス・コンストラクション(NSR)の最近の進歩は、ボリュームレンダリングと組み合わせることで、マルチビュー・コンストラクションを著しく改善している。
本稿では,多種多様な視覚的タスクから価値ある特徴を活用すべく,特徴レベルの一貫した損失について検討する。
DTU と EPFL を用いて解析した結果,画像マッチングと多視点ステレオデータセットによる特徴が,他のプリテキストタスクよりも優れていたことが判明した。
論文 参考訳(メタデータ) (2024-08-04T16:09:46Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
基礎的な視覚変換器モデルは、多くの視覚タスクにおいて、驚くほどのショットパフォーマンスを示している。
本研究は,アクティブラーニング(AL)フレームワークにおけるパラメータ効率の良い微調整手法の適用に関する新たな研究である。
論文 参考訳(メタデータ) (2024-06-13T16:30:32Z) - Dynamic and Adaptive Feature Generation with LLM [10.142660254703225]
本稿では,特徴生成プロセスの解釈可能性を高める動的かつ適応的な特徴生成手法を提案する。
弊社のアプローチは、さまざまなデータタイプやタスクに適用可能性を広げ、戦略的柔軟性よりも優位性を引き出す。
論文 参考訳(メタデータ) (2024-06-04T20:32:14Z) - Optimizing cnn-Bigru performance: Mish activation and comparative analysis with Relu [0.0]
アクティベーション関数(AF)はニューラルネットワークの基本コンポーネントであり、データ内の複雑なパターンや関係をキャプチャすることができる。
本研究は, 侵入検知システムの性能向上におけるAFの有効性を照らすものである。
論文 参考訳(メタデータ) (2024-05-30T21:48:56Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Feature Interaction Aware Automated Data Representation Transformation [27.26916497306978]
我々は,マルコフ決定過程をカスケードした階層的強化学習構造を開発し,特徴選択と操作選択を自動化する。
我々は、選択された特徴間の相互作用強度に基づいてエージェントに報酬を与える。その結果、人間の意思決定をエミュレートする特徴空間をインテリジェントかつ効率的に探索する。
論文 参考訳(メタデータ) (2023-09-29T06:48:16Z) - Robust Saliency-Aware Distillation for Few-shot Fine-grained Visual
Recognition [57.08108545219043]
サンプルが少ない新しいサブカテゴリを認識することは、コンピュータビジョンにおいて不可欠で挑戦的な研究課題である。
既存の文献は、ローカルベースの表現アプローチを採用することでこの問題に対処している。
本稿では,ロバスト・サリエンシ・アウェア蒸留法(RSaD)を提案する。
論文 参考訳(メタデータ) (2023-05-12T00:13:17Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
ビデオ・サリエント・オブジェクト検出(VSOD)は多くの視覚アプリケーションにおいて重要な課題である。
vsodのための適応型局所的グローバルリファインメントフレームワークを提案する。
重み付け手法は特徴相関を更に活用し,ネットワークにより識別的な特徴表現を学習させることができることを示す。
論文 参考訳(メタデータ) (2021-04-29T14:14:11Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
クロスリゾリューション顔認識(CRFR)は、インテリジェントな監視およびバイオメトリックフォレンジックにおいて重要である。
既存の浅層学習と深層学習に基づく手法は、HR-LR対を共同特徴空間にマッピングすることに焦点を当てている。
本研究では,多レベル深層畳み込みニューラルネットワーク(CNN)の機能を完全に活用し,堅牢なCRFRを実現することを目的とする。
論文 参考訳(メタデータ) (2021-03-25T14:03:42Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
我々は,低レベルな外観特徴,高レベルな意味特徴,グローバルな文脈特徴を統合化するための新しいネットワークGCPANetを提案する。
提案手法は, 定量的かつ定性的に, 最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-03-02T04:26:10Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。