From Intention To Implementation: Automating Biomedical Research via LLMs
- URL: http://arxiv.org/abs/2412.09429v2
- Date: Sun, 22 Dec 2024 05:34:46 GMT
- Title: From Intention To Implementation: Automating Biomedical Research via LLMs
- Authors: Yi Luo, Linghang Shi, Yihao Li, Aobo Zhuang, Yeyun Gong, Ling Liu, Chen Lin,
- Abstract summary: This paper introduces BioResearcher, the first end-to-end automated system designed to streamline the entire biomedical research process.
By decomposing complex tasks into logically related sub-tasks, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical complexity.
BioResearcher successfully achieves an average execution success rate of 63.07% across eight previously unmet research objectives.
- Score: 30.32209981487504
- License:
- Abstract: Conventional biomedical research is increasingly labor-intensive due to the exponential growth of scientific literature and datasets. Artificial intelligence (AI), particularly Large Language Models (LLMs), has the potential to revolutionize this process by automating various steps. Still, significant challenges remain, including the need for multidisciplinary expertise, logicality of experimental design, and performance measurements. This paper introduces BioResearcher, the first end-to-end automated system designed to streamline the entire biomedical research process involving dry lab experiments. BioResearcher employs a modular multi-agent architecture, integrating specialized agents for search, literature processing, experimental design, and programming. By decomposing complex tasks into logically related sub-tasks and utilizing a hierarchical learning approach, BioResearcher effectively addresses the challenges of multidisciplinary requirements and logical complexity. Furthermore, BioResearcher incorporates an LLM-based reviewer for in-process quality control and introduces novel evaluation metrics to assess the quality and automation of experimental protocols. BioResearcher successfully achieves an average execution success rate of 63.07% across eight previously unmet research objectives. The generated protocols averagely outperform typical agent systems by 22.0% on five quality metrics. The system demonstrates significant potential to reduce researchers' workloads and accelerate biomedical discoveries, paving the way for future innovations in automated research systems.
Related papers
- Knowledge Hierarchy Guided Biological-Medical Dataset Distillation for Domain LLM Training [10.701353329227722]
We propose a framework that automates the distillation of high-quality textual training data from the extensive scientific literature.
Our approach self-evaluates and generates questions that are more closely aligned with the biomedical domain.
Our approach substantially improves question-answering tasks compared to pre-trained models from the life sciences domain.
arXiv Detail & Related papers (2025-01-25T07:20:44Z) - Agent Laboratory: Using LLM Agents as Research Assistants [26.588095150057384]
Agent Laboratory is an autonomous framework capable of completing the entire research process.
It accepts a human-provided research idea and progresses through three stages--literature review, experimentation, and report writing.
Agent Laboratory significantly reduces research expenses, achieving an 84% decrease compared to previous autonomous research methods.
arXiv Detail & Related papers (2025-01-08T01:58:42Z) - Automating Exploratory Proteomics Research via Language Models [22.302672656499315]
PROTEUS is a fully automated system for scientific discovery from raw data.
It produces a comprehensive set of research objectives, analysis results and novel biological hypotheses without human intervention.
arXiv Detail & Related papers (2024-11-06T08:16:56Z) - NeuroSym-BioCAT: Leveraging Neuro-Symbolic Methods for Biomedical Scholarly Document Categorization and Question Answering [0.14999444543328289]
We introduce a novel approach that integrates an optimized topic modelling framework, OVB-LDA, with the BI-POP CMA-ES optimization technique for enhanced scholarly document abstract categorization.
We employ the distilled MiniLM model, fine-tuned on domain-specific data, for high-precision answer extraction.
arXiv Detail & Related papers (2024-10-29T14:45:12Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - ResearchAgent: Iterative Research Idea Generation over Scientific Literature with Large Language Models [56.08917291606421]
ResearchAgent is an AI-based system for ideation and operationalization of novel work.
ResearchAgent automatically defines novel problems, proposes methods and designs experiments, while iteratively refining them.
We experimentally validate our ResearchAgent on scientific publications across multiple disciplines.
arXiv Detail & Related papers (2024-04-11T13:36:29Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - When Bioprocess Engineering Meets Machine Learning: A Survey from the
Perspective of Automated Bioprocess Development [3.687740185234604]
Machine learning (ML) has significantly contributed to the development of bioprocess engineering, but its application is still limited.
This review provides a comprehensive overview of ML-based automation in bioprocess development.
arXiv Detail & Related papers (2022-09-02T14:30:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.