論文の概要: Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward
- arxiv url: http://arxiv.org/abs/2411.03866v1
- Date: Wed, 06 Nov 2024 12:22:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-28 17:07:44.950552
- Title: Performance evaluation of SLAM-ASR: The Good, the Bad, the Ugly, and the Way Forward
- Title(参考訳): SLAM-ASRの性能評価
- Authors: Shashi Kumar, Iuliia Thorbecke, Sergio Burdisso, Esaú Villatoro-Tello, Manjunath K E, Kadri Hacioğlu, Pradeep Rangappa, Petr Motlicek, Aravind Ganapathiraju, Andreas Stolcke,
- Abstract要約: 近年,音声基盤エンコーダと大規模言語モデル(LLM)の線形接続を訓練することで,このアーキテクチャが強力なASR機能を実現することが実証されている。
印象的な結果にもかかわらず、これらの単純なアプローチが様々なシナリオや発話条件で十分に堅牢であるかどうかは不明だ。
本稿では,SLAM-ASRアーキテクチャを多種多様な設定で効果的に活用する方法について考察した。
- 参考スコア(独自算出の注目度): 10.914414815406275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has demonstrated that training a linear connector between speech foundation encoders and large language models (LLMs) enables this architecture to achieve strong ASR capabilities. Despite the impressive results, it remains unclear whether these simple approaches are robust enough across different scenarios and speech conditions, such as domain shifts and different speech perturbations. In this paper, we address these questions by conducting various ablation experiments using a recent and widely adopted approach called SLAM-ASR. We present novel empirical findings that offer insights on how to effectively utilize the SLAM-ASR architecture across a wide range of settings. Our main findings indicate that the SLAM-ASR exhibits poor performance in cross-domain evaluation settings. Additionally, speech perturbations within in-domain data, such as changes in speed or the presence of additive noise, can significantly impact performance. Our findings offer critical insights for fine-tuning and configuring robust LLM-based ASR models, tailored to different data characteristics and computational resources.
- Abstract(参考訳): 近年,音声基盤エンコーダと大規模言語モデル(LLM)の線形接続を訓練することで,このアーキテクチャが強力なASR機能を実現することが実証されている。
印象的な結果にもかかわらず、これらの単純なアプローチが、ドメインシフトや異なる音声摂動など、異なるシナリオや音声条件で十分に堅牢であるかどうかは不明だ。
本稿では、SLAM-ASRと呼ばれる最近広く採用されているアプローチを用いて、様々なアブレーション実験を行うことにより、これらの問題に対処する。
本稿では,SLAM-ASRアーキテクチャを多種多様な設定で効果的に活用する方法に関する知見を提供する。
以上の結果から,SLAM-ASRはドメイン間評価設定において性能が劣っていることが示唆された。
さらに、速度の変化や付加雑音の存在など、ドメイン内のデータ内の音声摂動は、性能に大きな影響を及ぼす可能性がある。
我々の研究結果は、異なるデータ特性と計算資源に合わせて、ロバストLLMベースのASRモデルを微調整し、構成するための重要な洞察を提供する。
関連論文リスト
- Impact of Noise on LLM-Models Performance in Abstraction and Reasoning Corpus (ARC) Tasks with Model Temperature Considerations [4.39614901077936]
大規模言語モデル(LLM)は、構造化推論機能への関心が高まっている。
Abstraction and Reasoning Corpusベンチマークは、AIモデルが新しい問題にどのように一般化するかをテストすることによって、これらの能力を評価する上で重要な役割を果たす。
この研究は、現実世界のシナリオに固有のあいまいさと可変性を扱うことができる、より堅牢で適応可能なAIシステムを開発する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2025-04-22T13:43:58Z) - Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains [92.36624674516553]
検証可能な報酬付き強化学習(RLVR)は、大規模言語モデル(LLM)の数学的推論と符号化性能の向上に成功している。
本稿では,医学,化学,心理学,経済学,教育など,さまざまな現実世界領域におけるRLVRの有効性と拡張性について検討する。
我々は,2値検証による制限を克服するために,ソフトなモデルに基づく報酬信号を生成する生成的スコアリング手法を利用する。
論文 参考訳(メタデータ) (2025-03-31T08:22:49Z) - Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
LLM生成データによる微調整により,目標タスク性能が向上し,ドメイン外劣化の低減が図られる。
LLM生成トレーニングデータによって与えられる優れたOODロバスト性について、これが最初の力学的説明である。
論文 参考訳(メタデータ) (2025-01-24T08:18:56Z) - Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting [40.78026627009521]
強化学習(Reinforcement Learning、RL)は、大規模言語モデル(LLM)知識を逐次意思決定タスクと整合させるための有望なアプローチである。
テキスト環境下でのRL学習後の定式化を促進するために,LLMの感度を解析するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-25T18:25:35Z) - SAMBO-RL: Shifts-aware Model-based Offline Reinforcement Learning [9.88109749688605]
モデルに基づくオフライン強化学習は、事前コンパイルされたデータセットと学習環境モデルを使用してポリシーを訓練する。
本稿では,問題をモデルバイアスとポリシーシフトという2つの基本要素に分解する包括的分析を行う。
本稿では,モデルに基づくオフライン強化学習(SAMBO-RL)について紹介する。
論文 参考訳(メタデータ) (2024-08-23T04:25:09Z) - Disentangled Noisy Correspondence Learning [56.06801962154915]
クロスモーダル検索は、モダリティ間の潜在対応を理解する上で重要である。
DisNCLはノイズ対応学習における特徴分散のための新しい情報理論フレームワークである。
論文 参考訳(メタデータ) (2024-08-10T09:49:55Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
大きな言語モデル(LLM)は、入力クエリから人間のようなテキストを理解し、生成する能力を持つ。
本研究では、この概念を、レトリーバル拡張生成(RAG)パイプライン内のLLMの統合に拡張する。
データ抽出と文脈理解における微調整がLLMの能力に与える影響を評価する。
論文 参考訳(メタデータ) (2024-06-17T04:35:17Z) - Enhancing Noise Robustness of Retrieval-Augmented Language Models with Adaptive Adversarial Training [39.21885486667879]
大型言語モデル(LLM)は、幻覚、時代遅れの知識、追跡不能な推論プロセスなどの課題に遭遇する重大な能力を示す。
Retrieval-augmented Generation(RAG)は、これらの課題を軽減するために、外部データベースからの知識を統合する、有望なソリューションとして登場した。
本稿では,RAAT(Retrieval-augmented Adaptive Adrial Training)として知られる新しいRAGアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-31T16:24:53Z) - Crossmodal ASR Error Correction with Discrete Speech Units [16.58209270191005]
ASR誤り訂正(AEC)に対するASR後処理手法を提案する。
我々は、事前学習と微調整の戦略を探求し、ASRドメインの不一致現象を明らかにする。
そこで本稿では,AEC品質向上のための単語埋め込みの整合・強化を目的とした,離散音声ユニットの組込みを提案する。
論文 参考訳(メタデータ) (2024-05-26T19:58:38Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
評価の結果、スケーリング、トレーニングタイプ、アーキテクチャなどの要因がLLMのパフォーマンスに大きな影響を与えていることが明らかになった。
本研究は, これらのLCMの徹底的な再検討に着手し, 現状評価手法における不整合性に着目した。
これには、ANOVA、Tukey HSDテスト、GAMM、クラスタリング技術などが含まれる。
論文 参考訳(メタデータ) (2024-03-22T14:47:35Z) - RAGGED: Towards Informed Design of Retrieval Augmented Generation Systems [51.171355532527365]
Retrieval-augmented Generation (RAG) は言語モデル(LM)の性能を大幅に向上させる
RAGGEDは、様々な文書ベースの質問応答タスクにわたるRAG構成を分析するためのフレームワークである。
論文 参考訳(メタデータ) (2024-03-14T02:26:31Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
強化学習(RL)は複雑な環境における意思決定のための強力なフレームワークを提供する。
本稿では,実測値を用いてRL問題を解くための新しいスパイキングニューラルネットワーク(SNN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-07-06T12:33:34Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - ASR: Attention-alike Structural Re-parameterization [53.019657810468026]
本稿では,アテンション機構の有効性を享受しながら,与えられたネットワークに対してSRPを実現するための,シンプルなアテンション型構造的再パラメータ化(ASR)を提案する。
本稿では,統計的観点から広範囲にわたる実験を行い,Stripe Observationという興味深い現象を発見し,チャネル注意値が訓練中に一定のベクトルに素早く接近することを明らかにする。
論文 参考訳(メタデータ) (2023-04-13T08:52:34Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
インテント分類は、音声言語理解(SLU)における主要な課題である
近年の研究では、余分なデータやラベルを使用することで、OOD検出性能が向上することが示されている。
本稿では、IND意図分類とOOD検出の両方をサポートしながら、INDデータのみを用いてモデルを訓練することを提案する。
論文 参考訳(メタデータ) (2021-06-28T08:27:38Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
既存のモデルはクリーンデータに基づいてトレーニングされ、クリーンデータトレーニングと現実世界の推論の間にtextitgapが発生する。
本稿では,良質なサンプルと低品質のサンプルの両方が類似ベクトル空間に埋め込まれた領域適応法を提案する。
広く使用されているデータセット、スニップス、および大規模な社内データセット(1000万のトレーニング例)に関する実験では、この方法は実世界の(騒々しい)コーパスのベースラインモデルを上回るだけでなく、堅牢性、すなわち、騒々しい環境下で高品質の結果を生み出すことを実証しています。
論文 参考訳(メタデータ) (2021-04-13T17:54:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。