論文の概要: Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting
- arxiv url: http://arxiv.org/abs/2410.19920v2
- Date: Tue, 29 Oct 2024 09:07:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:40:00.632642
- Title: Reinforcement Learning for Aligning Large Language Models Agents with Interactive Environments: Quantifying and Mitigating Prompt Overfitting
- Title(参考訳): 対話型環境をもつ大規模言語モデルエージェントの強化学習:プロンプトオーバーフィッティングの定量化と緩和
- Authors: Mohamed Salim Aissi, Clement Romac, Thomas Carta, Sylvain Lamprier, Pierre-Yves Oudeyer, Olivier Sigaud, Laure Soulier, Nicolas Thome,
- Abstract要約: 強化学習(Reinforcement Learning、RL)は、大規模言語モデル(LLM)知識を逐次意思決定タスクと整合させるための有望なアプローチである。
テキスト環境下でのRL学習後の定式化を促進するために,LLMの感度を解析するための新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 40.78026627009521
- License:
- Abstract: Reinforcement learning (RL) is a promising approach for aligning large language models (LLMs) knowledge with sequential decision-making tasks. However, few studies have thoroughly investigated the impact on LLM agents capabilities of fine-tuning them with RL in a specific environment. In this paper, we propose a novel framework to analyze the sensitivity of LLMs to prompt formulations following RL training in a textual environment. Our findings reveal that the performance of LLMs degrades when faced with prompt formulations different from those used during the RL training phase. Besides, we analyze the source of this sensitivity by examining the model's internal representations and salient tokens. Finally, we propose to use a contrastive loss to mitigate this sensitivity and improve the robustness and generalization capabilities of LLMs.
- Abstract(参考訳): 強化学習(Reinforcement Learning、RL)は、大規模言語モデル(LLM)知識を逐次意思決定タスクと整合させるための有望なアプローチである。
しかし、特定の環境下でRLを微調整するLLMエージェントの能力への影響を徹底的に研究する研究はほとんどない。
本稿では,テキスト環境下でのRL学習後の定式化を促進するため,LLMの感度を解析するための新しいフレームワークを提案する。
以上の結果より, LLMは, RLトレーニングフェーズで使用するものとは異なる急激な定式化に直面すると劣化することが明らかとなった。
さらに、モデルの内部表現と有能なトークンを調べることにより、この感度の源泉を解析する。
最後に、この感度を低減し、LLMの堅牢性と一般化能力を向上させるために、対照的な損失を用いることを提案する。
関連論文リスト
- Beyond Binary: Towards Fine-Grained LLM-Generated Text Detection via Role Recognition and Involvement Measurement [51.601916604301685]
大規模言語モデル(LLM)は、オンライン談話における信頼を損なう可能性のあるコンテンツを生成する。
現在の手法はバイナリ分類に重点を置いており、人間とAIのコラボレーションのような現実のシナリオの複雑さに対処できないことが多い。
バイナリ分類を超えてこれらの課題に対処するために,LLM生成コンテンツを検出するための新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-10-18T08:14:10Z) - Insights from the Inverse: Reconstructing LLM Training Goals Through Inverse RL [7.988692259455583]
Reinforcement Learning from Human Feedbackで訓練された大規模言語モデル(LLM)は、目覚ましい能力を示しているが、その基盤となる報酬関数や意思決定プロセスは不透明である。
本稿では, 逆強化学習(IRL)を用いて暗黙の報酬関数を復元することにより, LLMを解釈する新しい手法を提案する。
我々は,ヒトの嗜好を予測する上で,最大80.40%の精度を達成できる報酬モデルを抽出し,様々な大きさの毒性アライメントLDMについて実験を行った。
論文 参考訳(メタデータ) (2024-10-16T12:14:25Z) - Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
本稿では,マルコフ決定過程の動的状態を予測するために,事前学習した大規模言語モデルをどのように活用することができるかを検討する。
本稿では,モデルに基づく政策評価とデータ強化型オフ政治強化学習という2つの強化学習環境における概念実証の応用について述べる。
論文 参考訳(メタデータ) (2024-10-15T15:46:53Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTRは、ヒトに適応し、多目的な意思決定を提供する新しいニューロシンボリックアーキテクチャである。
我々のフレームワークは、ACT-Rの内部決定過程の知識を潜在神経表現として抽出し、組み込む。
デザイン・フォー・マニュファクチャリング・タスクに関する我々の実験は、タスク性能の向上と基礎的意思決定能力の向上を両立させたものである。
論文 参考訳(メタデータ) (2024-08-17T11:49:53Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Explaining Large Language Models Decisions with Shapley Values [1.223779595809275]
大規模言語モデル(LLM)は、人間の行動や認知過程をシミュレートするエキサイティングな可能性を開いた。
しかし, LLMを人体用スタンドインとして活用する妥当性は, いまだに不明である。
本稿では,モデルの出力に対する各プロンプト成分の相対的寄与を定量化するために,シェープリー値に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T22:49:43Z) - Balancing Exploration and Exploitation in LLM using Soft RLLF for
Enhanced Negation Understanding [4.799288023353623]
NLPにおける微調整のアプローチは、しばしば探索よりも搾取に焦点を当てる。
論理フィードバックからの強化学習を活用して、言語モデルにおける探索と搾取の効果的なバランスを作る。
これは、より正確で信頼性があり、論理的に一貫した言語モデルの開発に意味を持つ。
論文 参考訳(メタデータ) (2024-03-02T11:54:55Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
セグメンテッドな物語から一貫した知識表現を定式化する上で,LLMの習熟度を評価するための新しい質問答えベンチマークであるEpiK-Evalを紹介する。
これらの欠点は、一般的な訓練目的の本質的な性質に起因していると論じる。
本研究の成果は,より堅牢で信頼性の高いLCMを開発する上での洞察を与えるものである。
論文 参考訳(メタデータ) (2023-10-23T21:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。