論文の概要: How Transformers Solve Propositional Logic Problems: A Mechanistic Analysis
- arxiv url: http://arxiv.org/abs/2411.04105v2
- Date: Thu, 07 Nov 2024 03:50:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 11:32:09.068642
- Title: How Transformers Solve Propositional Logic Problems: A Mechanistic Analysis
- Title(参考訳): 変圧器による命題論理問題の解法:機械的解析
- Authors: Guan Zhe Hong, Nishanth Dikkala, Enming Luo, Cyrus Rashtchian, Xin Wang, Rina Panigrahy,
- Abstract要約: 大きな言語モデル(LLM)は、計画と推論を必要とするタスクで素晴らしいパフォーマンスを示しています。
そこで本研究では,複雑な論理的推論を行うネットワークの能力の基盤となる内部メカニズムについて検討する。
- 参考スコア(独自算出の注目度): 16.65073455206535
- License:
- Abstract: Large language models (LLMs) have shown amazing performance on tasks that require planning and reasoning. Motivated by this, we investigate the internal mechanisms that underpin a network's ability to perform complex logical reasoning. We first construct a synthetic propositional logic problem that serves as a concrete test-bed for network training and evaluation. Crucially, this problem demands nontrivial planning to solve, but we can train a small transformer to achieve perfect accuracy. Building on our set-up, we then pursue an understanding of precisely how a three-layer transformer, trained from scratch, solves this problem. We are able to identify certain "planning" and "reasoning" circuits in the network that necessitate cooperation between the attention blocks to implement the desired logic. To expand our findings, we then study a larger model, Mistral 7B. Using activation patching, we characterize internal components that are critical in solving our logic problem. Overall, our work systemically uncovers novel aspects of small and large transformers, and continues the study of how they plan and reason.
- Abstract(参考訳): 大きな言語モデル(LLM)は、計画と推論を必要とするタスクで素晴らしいパフォーマンスを示しています。
そこで本研究では,複雑な論理的推論を行うネットワークの能力の基盤となる内部メカニズムについて検討する。
まず、ネットワークトレーニングと評価のための具体的なテストベッドとして機能する合成命題論理問題を構築する。
重要なこととして、この問題は非自明な計画を必要とするが、我々は完全な精度を達成するために小さな変圧器を訓練することができる。
セットアップに基づいて、スクラッチからトレーニングされた3層トランスフォーマーが、この問題をいかに解決するかを正確に理解する。
ネットワーク内の特定の「計画」回路と「推論」回路を特定でき、そこでは、所望の論理を実装するために、注目ブロック間の協調が必要である。
結果を拡張するため,より大型のMistral 7Bについて検討した。
アクティベーションパッチを用いることで、ロジックの問題を解決する上で重要な内部コンポーネントを特徴付ける。
全体として、我々の研究は、小さくて大きなトランスフォーマーの新たな側面を体系的に明らかにし、それらがどのように計画され、なぜか研究を続けている。
関連論文リスト
- How Do LLMs Perform Two-Hop Reasoning in Context? [76.79936191530784]
我々は合成二脚推論タスクで三層変圧器を訓練する。
モデルが乱れをランダムに推測する方法を学習するための内部メカニズムを説明する。
私たちの研究は、トレーニング中に推論がどのように現れるかについて、新たな洞察を与えてくれます。
論文 参考訳(メタデータ) (2025-02-19T17:46:30Z) - Mechanistic Unveiling of Transformer Circuits: Self-Influence as a Key to Model Reasoning [9.795934690403374]
このような課題を解決するために言語モデルでどのような多段階推論機構が使われているのかはいまだ不明である。
回路解析と自己影響関数を用いて、推論過程を通して各トークンの変動の重要性を評価する。
提案手法は,モデルが使用する人間の解釈可能な推論過程を明らかにする。
論文 参考訳(メタデータ) (2025-02-13T07:19:05Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Distributional reasoning in LLMs: Parallel reasoning processes in multi-hop reasoning [8.609587510471943]
本稿では,大規模言語モデルにおける内部マルチホップ推論プロセスの新規かつ解釈可能な解析手法を提案する。
推論中、ネットワークの中間層は高度に解釈可能な埋め込みを生成する。
我々の発見は、LLMが推論タスクの解決に使っている戦略を明らかにするのに役立ち、人工知能から生まれる思考プロセスのタイプに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-06-19T21:36:40Z) - Towards a Mechanistic Interpretation of Multi-Step Reasoning
Capabilities of Language Models [107.07851578154242]
言語モデル(LM)は強力な多段階推論能力を持つ。
LMが事前学習コーパスから記憶された回答を不正に処理するか,多段階推論機構を用いてタスクを実行するかは明らかでない。
メカニスティックプローブは,ほとんどの例において,モデルの注意から推論ツリーの情報を検出することができることを示す。
論文 参考訳(メタデータ) (2023-10-23T01:47:29Z) - Faith and Fate: Limits of Transformers on Compositionality [109.79516190693415]
3つの代表的構成課題にまたがる変圧器大言語モデルの限界について検討する。
これらのタスクは、問題をサブステップに分割し、これらのステップを正確な答えに合成する必要があります。
実験結果から,多段階合成推論を線形化部分グラフマッチングに還元することにより,トランスフォーマーLLMが構成課題を解くことが示唆された。
論文 参考訳(メタデータ) (2023-05-29T23:24:14Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z) - AR-LSAT: Investigating Analytical Reasoning of Text [57.1542673852013]
テキストの分析的推論の課題を研究し、1991年から2016年までのロースクール入学試験からの質問からなる新しいデータセットを紹介します。
我々は,この課題をうまくこなすために必要な知識理解と推論能力を分析する。
論文 参考訳(メタデータ) (2021-04-14T02:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。