ShEPhERD: Diffusing shape, electrostatics, and pharmacophores for bioisosteric drug design
- URL: http://arxiv.org/abs/2411.04130v2
- Date: Fri, 14 Mar 2025 18:13:25 GMT
- Title: ShEPhERD: Diffusing shape, electrostatics, and pharmacophores for bioisosteric drug design
- Authors: Keir Adams, Kento Abeywardane, Jenna Fromer, Connor W. Coley,
- Abstract summary: In drug design, bioisosteric analogues of known bioactive hits are often identified by virtually screening chemical libraries with shape, electrostatic, and pharmacophore similarity scoring functions.<n>We hypothesize that a generative model which learns the joint distribution over 3D molecular structures and their interaction profiles may facilitate 3D interaction-aware chemical design.<n>We specifically design ShEPhERD, an SE(3)-equivariant diffusion model which jointly diffuses/denoises 3D molecular graphs and representations of their shapes, electrostatic potential surfaces, and (directional) pharmacophores to/from Gaussian noise.
- Score: 12.447291301949997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Engineering molecules to exhibit precise 3D intermolecular interactions with their environment forms the basis of chemical design. In ligand-based drug design, bioisosteric analogues of known bioactive hits are often identified by virtually screening chemical libraries with shape, electrostatic, and pharmacophore similarity scoring functions. We instead hypothesize that a generative model which learns the joint distribution over 3D molecular structures and their interaction profiles may facilitate 3D interaction-aware chemical design. We specifically design ShEPhERD, an SE(3)-equivariant diffusion model which jointly diffuses/denoises 3D molecular graphs and representations of their shapes, electrostatic potential surfaces, and (directional) pharmacophores to/from Gaussian noise. Inspired by traditional ligand discovery, we compose 3D similarity scoring functions to assess ShEPhERD's ability to conditionally generate novel molecules with desired interaction profiles. We demonstrate ShEPhERD's potential for impact via exemplary drug design tasks including natural product ligand hopping, protein-blind bioactive hit diversification, and bioisosteric fragment merging.
Related papers
- Pharmacophore-Conditioned Diffusion Model for Ligand-Based De Novo Drug Design [0.0]
We present PharmaDiff, a pharmacophore-conditioned diffusion model for 3D molecular generation.<n>PharmaDiff employs a transformer-based architecture to integrate an atom-based representation of the 3D pharmacophore into the generative process.
arXiv Detail & Related papers (2025-05-15T17:54:29Z) - Learning Disentangled Equivariant Representation for Explicitly Controllable 3D Molecule Generation [29.905705361297578]
conditional generation of 3D drug-like molecules with textitexplicit control
We propose an E(3)-equivariant Wasserstein autoencoder and factorize the latent space of our generative model into two disentangled aspects: molecular properties and the remaining structural context of 3D molecules.
arXiv Detail & Related papers (2024-12-19T17:33:56Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Diffusion Models in $\textit{De Novo}$ Drug Design [0.0]
Diffusion models have emerged as powerful tools for molecular generation, particularly in the context of 3D molecular structures.
This review focuses on the technical implementation of diffusion models tailored for 3D molecular generation.
arXiv Detail & Related papers (2024-06-07T06:34:13Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - Generation of 3D Molecules in Pockets via Language Model [0.0]
Generative models for molecules based on sequential line notation (e.g. SMILES) or graph representation have attracted an increasing interest in the field of structure-based drug design.
We introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology.
arXiv Detail & Related papers (2023-05-17T11:31:06Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one.
In real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms.
In this work, a generative diffusion model for molecular 3D structures based on target proteins is established, at a full-atom level in a non-autoregressive way.
arXiv Detail & Related papers (2022-11-21T07:02:15Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
We propose DiffLinker, an E(3)-equivariant 3D-conditional diffusion model for molecular linker design.
Our model places missing atoms in between and designs a molecule incorporating all the initial fragments.
We demonstrate that DiffLinker outperforms other methods on the standard datasets generating more diverse and synthetically-accessible molecules.
arXiv Detail & Related papers (2022-10-11T09:13:37Z) - In-Pocket 3D Graphs Enhance Ligand-Target Compatibility in Generative
Small-Molecule Creation [0.0]
We present a graph-based generative modeling technology that encodes explicit 3D protein-ligand contacts within a relational graph architecture.
The models combine a conditional variational autoencoder that allows for activity-specific molecule generation with putative contact generation that provides predictions of molecular interactions within the target binding pocket.
arXiv Detail & Related papers (2022-04-05T22:53:51Z) - A 3D Molecule Generative Model for Structure-Based Drug Design [18.29582138009123]
We study a fundamental problem in structure-based drug design -- generating molecules that bind to specific protein binding sites.
We propose a 3D generative model that generates molecules given a designated 3D protein binding site.
arXiv Detail & Related papers (2022-03-20T03:54:47Z) - Investigating 3D Atomic Environments for Enhanced QSAR [0.0]
Predicting bioactivity and physical properties of molecules is a longstanding challenge in drug design.
Most approaches use molecular descriptors based on a 2D representation of molecules as a graph of atoms and bonds, abstracting away the molecular shape.
We describe a novel alignment-free 3D QSAR method using Smooth Overlap of Atomic Positions (SOAP), a well-established formalism developed for interpolating potential energy surfaces.
arXiv Detail & Related papers (2020-10-24T10:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.