NetworkGym: Reinforcement Learning Environments for Multi-Access Traffic Management in Network Simulation
- URL: http://arxiv.org/abs/2411.04138v1
- Date: Wed, 30 Oct 2024 01:14:33 GMT
- Title: NetworkGym: Reinforcement Learning Environments for Multi-Access Traffic Management in Network Simulation
- Authors: Momin Haider, Ming Yin, Menglei Zhang, Arpit Gupta, Jing Zhu, Yu-Xiang Wang,
- Abstract summary: This paper introduces textitNetworkGym, a high-fidelity network environment simulator.
It facilitates training and evaluating different RL-based solutions for the multi-access traffic splitting problem.
We also propose an extension to the TD3+BC algorithm, named Pessimistic TD3 (PTD3), and demonstrate that it outperforms many state-of-the-art offline RL algorithms.
- Score: 27.353473477645576
- License:
- Abstract: Mobile devices such as smartphones, laptops, and tablets can often connect to multiple access networks (e.g., Wi-Fi, LTE, and 5G) simultaneously. Recent advancements facilitate seamless integration of these connections below the transport layer, enhancing the experience for apps that lack inherent multi-path support. This optimization hinges on dynamically determining the traffic distribution across networks for each device, a process referred to as \textit{multi-access traffic splitting}. This paper introduces \textit{NetworkGym}, a high-fidelity network environment simulator that facilitates generating multiple network traffic flows and multi-access traffic splitting. This simulator facilitates training and evaluating different RL-based solutions for the multi-access traffic splitting problem. Our initial explorations demonstrate that the majority of existing state-of-the-art offline RL algorithms (e.g. CQL) fail to outperform certain hand-crafted heuristic policies on average. This illustrates the urgent need to evaluate offline RL algorithms against a broader range of benchmarks, rather than relying solely on popular ones such as D4RL. We also propose an extension to the TD3+BC algorithm, named Pessimistic TD3 (PTD3), and demonstrate that it outperforms many state-of-the-art offline RL algorithms. PTD3's behavioral constraint mechanism, which relies on value-function pessimism, is theoretically motivated and relatively simple to implement.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow.
Traditional approaches often simplify road networks into standard graphs.
We propose a novel TSCS framework to realize intelligent traffic control.
arXiv Detail & Related papers (2024-04-17T02:46:18Z) - A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in
Next-gen Networks [1.1586742546971471]
Next-gen networks require automation and adaptively adjust network configuration based on traffic dynamics.
Traditional techniques that decide traffic policies are usually based on hand-crafted programming optimization and algorithms.
We develop a deep reinforcement learning (DRL) approach for adaptive traffic routing.
arXiv Detail & Related papers (2024-02-07T01:48:29Z) - Teal: Learning-Accelerated Optimization of WAN Traffic Engineering [68.7863363109948]
We present Teal, a learning-based TE algorithm that leverages the parallel processing power of GPUs to accelerate TE control.
To reduce the problem scale and make learning tractable, Teal employs a multi-agent reinforcement learning (RL) algorithm to independently allocate each traffic demand.
Compared with other TE acceleration schemes, Teal satisfies 6--32% more traffic demand and yields 197--625x speedups.
arXiv Detail & Related papers (2022-10-25T04:46:30Z) - Artificial Intelligence Empowered Multiple Access for Ultra Reliable and
Low Latency THz Wireless Networks [76.89730672544216]
Terahertz (THz) wireless networks are expected to catalyze the beyond fifth generation (B5G) era.
To satisfy the ultra-reliability and low-latency demands of several B5G applications, novel mobility management approaches are required.
This article presents a holistic MAC layer approach that enables intelligent user association and resource allocation, as well as flexible and adaptive mobility management.
arXiv Detail & Related papers (2022-08-17T03:00:24Z) - Feudal Multi-Agent Reinforcement Learning with Adaptive Network
Partition for Traffic Signal Control [44.09601435685123]
Multi-agent reinforcement learning (MARL) has been applied and shown great potential in traffic signal control.
Previous work partitions the traffic network into several regions and learns policies for agents in a feudal structure.
We propose a novel feudal MARL approach with adaptive network partition.
arXiv Detail & Related papers (2022-05-27T09:02:10Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Area-wide traffic signal control based on a deep graph Q-Network (DGQN)
trained in an asynchronous manner [3.655021726150368]
Reinforcement learning (RL) algorithms have been widely applied in traffic signal studies.
There are, however, several problems in jointly controlling traffic lights for a large transportation network.
arXiv Detail & Related papers (2020-08-05T06:13:58Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.