論文の概要: BAPULM: Binding Affinity Prediction using Language Models
- arxiv url: http://arxiv.org/abs/2411.04150v1
- Date: Wed, 06 Nov 2024 04:35:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:18.212241
- Title: BAPULM: Binding Affinity Prediction using Language Models
- Title(参考訳): BAPULM:言語モデルを用いた結合親和性予測
- Authors: Radheesh Sharma Meda, Amir Barati Farimani,
- Abstract要約: 本稿では,ProtT5-XL-U50およびMollFormerを介してタンパク質の化学潜伏表現を利用する,革新的な配列ベースフレームワークであるBAPULMを紹介する。
提案手法は,ベンチマーク1k2101, Test2016_290, CSAR-HiQ_36でそれぞれ0.925 $pm$0.043, 0.914 $pm$0.004, 0.8132 $pm$0.0001のシーケンシャルスコアリングパワー(R)値を達成した。
- 参考スコア(独自算出の注目度): 7.136205674624813
- License:
- Abstract: Identifying drug-target interactions is essential for developing effective therapeutics. Binding affinity quantifies these interactions, and traditional approaches rely on computationally intensive 3D structural data. In contrast, language models can efficiently process sequential data, offering an alternative approach to molecular representation. In the current study, we introduce BAPULM, an innovative sequence-based framework that leverages the chemical latent representations of proteins via ProtT5-XL-U50 and ligands through MolFormer, eliminating reliance on complex 3D configurations. Our approach was validated extensively on benchmark datasets, achieving scoring power (R) values of 0.925 $\pm$ 0.043, 0.914 $\pm$ 0.004, and 0.8132 $\pm$ 0.001 on benchmark1k2101, Test2016_290, and CSAR-HiQ_36, respectively. These findings indicate the robustness and accuracy of BAPULM across diverse datasets and underscore the potential of sequence-based models in-silico drug discovery, offering a scalable alternative to 3D-centric methods for screening potential ligands.
- Abstract(参考訳): 薬物と標的の相互作用の同定は効果的な治療薬の開発に不可欠である。
結合親和性はこれらの相互作用を定量化し、伝統的なアプローチは計算集約的な3次元構造データに依存している。
対照的に、言語モデルはシーケンシャルデータを効率的に処理することができ、分子表現に対する代替のアプローチを提供する。
本稿では,ProtT5-XL-U50によるタンパク質の化学潜伏表現と,MollFormerによるリガンドを利用した複雑な3D構成への依存を排除した,革新的な配列ベースフレームワークであるBAPULMを紹介する。
提案手法は,ベンチマークデータセット上で広範囲に検証され,ベンチマーク1k2101では0.925 $\pm$0.043,0.914 $\pm$0.004,ベンチマーク1k2101では0.8132 $\pm$0.0001,テスト2016_290,CSAR-HiQ_36では0。
これらの結果は、多様なデータセットにまたがるBAPULMの堅牢性と正確性を示し、シークエンスベースの薬物発見の可能性を強調し、潜在的なリガンドをスクリーニングする3D中心の方法に代わるスケーラブルな代替手段を提供する。
関連論文リスト
- A Unified Approach to Inferring Chemical Compounds with the Desired Aqueous Solubility [5.763661159910719]
水溶性(AS)は、医薬品の発見と材料設計において重要な役割を果たす重要な物理化学的性質である。
本稿では,単純な決定論的グラフ理論記述子に基づいて,化学化合物を所望のASで予測し,推定するための新しい統一的アプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-06T14:20:38Z) - YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
伝統的な手法は複雑な分子構造を見逃し、不正確な結果をもたらすことが多い。
本稿では,グラフ畳み込みネットワーク(GCN),トランスフォーマーアーキテクチャ,Long Short-Term Memory(LSTM)ネットワークを統合するディープラーニングフレームワークであるYZS-Modelを紹介する。
YZS-Modelは、R2$ 0.59、RMSE$ 0.57を達成し、ベンチマークモデルを上回った。
論文 参考訳(メタデータ) (2024-06-27T12:40:29Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3次元生成モデルは、構造ベースドラッグデザイン(SBDD)において大きな可能性を秘めている。
問題を分子生成と特性予測に分離する。
後者は相乗的に拡散サンプリング過程を導出し、誘導拡散を促進し、所望の性質を持つ有意義な分子を創出する。
この誘導分子生成過程をTAGMolと呼ぶ。
論文 参考訳(メタデータ) (2024-06-03T14:43:54Z) - Regressor-free Molecule Generation to Support Drug Response Prediction [83.25894107956735]
目標IC50スコアに基づく条件生成により、より効率的なサンプリングスペースを得ることができる。
回帰自由誘導は、拡散モデルのスコア推定と、数値ラベルに基づく回帰制御モデルの勾配を結合する。
論文 参考訳(メタデータ) (2024-05-23T13:22:17Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
本稿では,入力分子と再構成グラフの類似性を比較する補助拡散モデルに基づくフレームワークを用いてOOD分子を検出することを提案する。
IDトレーニングサンプルの再構成に向けた生成バイアスのため、OOD分子の類似度スコアは検出を容易にするためにはるかに低い。
本研究は,PGR-MOOD(PGR-MOOD)とよばれる分子OOD検出のためのプロトタイプグラフ再構成のアプローチを開拓し,3つのイノベーションを生かした。
論文 参考訳(メタデータ) (2024-04-24T03:25:53Z) - SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
Molecular Property Prediction [1.534667887016089]
多パラメータ持続ホモロジー(MPPH)を用いた新しい分子指紋生成法を提案する。
この技術は、正確な分子特性予測が不可欠である薬物発見と材料科学において、かなりの重要性を持っている。
分子特性の予測における既存の最先端手法よりも優れた性能を示し,MoleculeNetベンチマークで広範囲な評価を行った。
論文 参考訳(メタデータ) (2023-12-12T09:33:54Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - From Static to Dynamic Structures: Improving Binding Affinity Prediction with Graph-Based Deep Learning [40.83037811977803]
Dynaformerは、タンパク質-リガンド結合親和性を予測するために開発されたグラフベースのディープラーニングモデルである。
CASF-2016ベンチマークデータセットでは、最先端のスコアとランキングの能力を示している。
熱ショックタンパク質90(HSP90)の仮想スクリーニングにおいて、20の候補を同定し、それらの結合親和性を実験的に検証する。
論文 参考訳(メタデータ) (2022-08-19T14:55:12Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。