論文の概要: Sound certification of memory-bounded quantum computers
- arxiv url: http://arxiv.org/abs/2411.04215v2
- Date: Sun, 08 Jun 2025 15:01:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-10 16:33:09.319473
- Title: Sound certification of memory-bounded quantum computers
- Title(参考訳): メモリバウンド量子コンピュータの音響認証
- Authors: Jan Nöller, Nikolai Miklin, Martin Kliesch, Mariami Gachechiladze,
- Abstract要約: 本稿では,現実的なサーバ・ユーザシナリオにおける量子ゲート認証のための量子システム・クイズ方式を提案する。
重要なことは、このアプローチは信頼できる状態の準備と測定を必要としないため、本質的には関連する系統的なエラーから解放される。
メモリバウンドの単一デバイスセットアップで最初に解決しようとしている技術的課題は、マルチキュービットシステムのテンソル積構造を回復することである。
- 参考スコア(独自算出の注目度): 0.1874930567916036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of quantum hardware calls for the development of reliable methods to certify its correct functioning. However, existing certification tests often fall short: they either rely on flawless state preparation and measurement or lack soundness guarantees, meaning that they do not rule out incorrect implementations of the target operations by a quantum device. We introduce an approach, which we call quantum system quizzing, for the certification of quantum gates in a practical server-user scenario, where a classical user tests the results of quantum computations performed by a quantum server. Importantly, this approach does not require trusted state preparation and measurement and is thus inherently free from the associated systematic errors. For a wide range of relevant gate sets, including a universal one, we prove our certification protocol to be sound, i.e., it rejects any quantum model other than the targeted one, assuming a bound on the total memory of the quantum computer. A major technical challenge that we are first to resolve in the memory-bounded single-device setup is recovering the tensor product structure of a multi-qubit system. Our protocol is platform-agnostic, introducing a new paradigm for benchmarking diverse quantum architectures.
- Abstract(参考訳): 量子ハードウェアの急速な進歩は、その正しい機能を証明する信頼性の高い方法の開発を要求する。
しかし、既存の認証テストは、しばしば不足している。それらは欠陥のない状態の準備と測定に依存するか、音の保証がないか、すなわち、量子デバイスによるターゲット操作の不正な実装を除外しない。
我々は,従来のユーザが量子サーバによって実行される量子計算の結果をテストする,実用的なサーバ-ユーザシナリオにおいて,量子ゲートの認証を行うための量子システムクイズ方式を提案する。
重要なことは、このアプローチは信頼できる状態の準備と測定を必要としないため、本質的には関連する系統的なエラーから解放される。
普遍性を含む幅広い関連するゲートセットに対して、我々の認証プロトコルが健全であることを証明する。すなわち、量子コンピュータの総メモリに束縛されていると仮定して、ターゲットとするもの以外の量子モデルを拒絶する。
メモリバウンドの単一デバイスセットアップで最初に解決しようとしている技術的課題は、マルチキュービットシステムのテンソル積構造を回復することである。
我々のプロトコルはプラットフォームに依存しないものであり、多様な量子アーキテクチャをベンチマークするための新しいパラダイムを導入しています。
関連論文リスト
- Quantum Computer Fingerprinting using Error Syndromes [2.680132607018545]
「我々は、量子エラー補正(QEC)の副産物を利用して、ハードウェアのアイデンティティを検証し、量子計算を無料で認証する戦略を提案している。」
シンドローム測定をメタデータのソースとして扱うことにより、検証を標準QECプロトコルにシームレスに組み込む。
我々は,数世代にわたるIBM量子コンピュータ上で,複数の誤り訂正符号,量子状態,回路コンパイル戦略を用いてアプローチを検証する。
論文 参考訳(メタデータ) (2025-06-19T21:23:08Z) - On-Chip Verified Quantum Computation with an Ion-Trap Quantum Processing Unit [0.5497663232622965]
本稿では、量子コンピューティングの検証とベンチマークのための新しいアプローチを提示し、実験的に実証する。
従来の情報理論的にセキュアな検証プロトコルとは異なり、我々のアプローチは完全にオンチップで実装されている。
我々の結果は、短期量子デバイスにおけるよりアクセスしやすく効率的な検証とベンチマーク戦略の道を開いた。
論文 参考訳(メタデータ) (2024-10-31T16:54:41Z) - Single-Round Proofs of Quantumness from Knowledge Assumptions [41.94295877935867]
量子性の証明は、効率的な量子コンピュータが通過できる、効率よく検証可能な対話型テストである。
既存のシングルラウンドプロトコルは大きな量子回路を必要とするが、マルチラウンドプロトコルはより小さな回路を使用するが、実験的な中間回路測定を必要とする。
我々は、既存の知識仮定に基づいて、量子性の効率的なシングルラウンド証明を構築した。
論文 参考訳(メタデータ) (2024-05-24T17:33:10Z) - Classical certification of quantum gates under the dimension assumption [0.1874930567916036]
本稿では,実用的なサーバユーザシナリオに適した量子ゲートの認証手法を提案する。
単一量子ビットの量子計算の普遍的な集合を構成するものを含む単一量子ビットのゲートに対しては、我々のアプローチが音響性を保証することを実証する。
論文 参考訳(メタデータ) (2024-01-30T13:40:39Z) - Limitations of measure-first protocols in quantum machine learning [2.209921757303168]
量子状態がデータポイントを構成する自然な教師付き学習環境について検討し、ラベルは未知の測定から導かれる。
完全量子プロトコルによって効率的に学習できるが、測度優先プロトコルには指数的な資源を必要とする問題が存在することを示す。
我々の結果は、機械学習における量子データ処理の役割を強調し、量子アドバンテージが現れるシナリオを強調します。
論文 参考訳(メタデータ) (2023-11-21T14:03:29Z) - Towards the device-independent certification of a quantum memory [0.0]
我々は量子メモリの効率的な認証方法を開発した。
デバイスに依存しないアプローチを考えると、量子メモリのための堅牢な自己テスト手法を開発する。
より一般的に,本手法は量子チャネルを実装した任意のデバイスの特徴付けに適用される。
論文 参考訳(メタデータ) (2023-04-20T15:46:40Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
量子性の検定は、古典的検証者が証明者が古典的でないことを(のみ)証明できるプロトコルである。
我々は、あるテンプレートに従う量子性のテストを行い、(Kalai et al., 2022)のような最近の提案を捉えた。
すなわち、同じプロトコルは、証明可能なランダム性や古典的な量子計算のデリゲートといったアプリケーションの中心にあるビルディングブロックであるqubitの認定に使用できる。
論文 参考訳(メタデータ) (2023-03-02T14:18:17Z) - Testing quantum computers with the protocol of quantum state matching [0.0]
量子コンピュータにおけるノイズの存在は、その効果的な操作を妨げる。
我々は、いわゆる量子状態マッチングプロトコルを試験目的に適用することを提案する。
体系的に異なる入力に対して、より小さな量子ボリュームを持つデバイスは、より大きい量子ボリュームを持つデバイスよりも、我々のテストでより優れた性能を発揮する。
論文 参考訳(メタデータ) (2022-10-18T08:25:34Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
証明者と検証者の間の「相互作用」は、検証可能性と実装のギャップを埋めることができる。
イオントラップ量子コンピュータを用いた対話型量子アドバンストプロトコルの最初の実装を実演する。
論文 参考訳(メタデータ) (2021-12-09T19:00:00Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
量子情報処理では、量子演算はしばしば古典的なデータをもたらす測定とともに処理される。
非単位の動的プロセスは、一般的な量子チャネルの記述が時間進化を記述するのに失敗するシステムで起こりうる。
量子測定は古典的な出力と測定後の量子状態の両方を計測するいわゆる量子機器によって正しく扱われる。
論文 参考訳(メタデータ) (2021-10-13T18:00:13Z) - Mitigating errors by quantum verification and post-selection [0.0]
本稿では,いわゆる認証プロトコルである量子検証に基づく量子誤り軽減手法とポストセレクションを提案する。
提案手法のサンプル複雑性について考察し,騒音の現実的な仮定の下で誤りを緩和する厳密な保証を提供する。
当社の手法では,認証プロトコルの異なる実行環境間で出力状態を異なるものにするため,動作の時間依存も可能としています。
論文 参考訳(メタデータ) (2021-09-29T10:29:39Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
耐故障性ウェイト4パリティチェック測定方式を実験的に実証した。
フラグ条件パリティ測定の単発忠実度は93.2(2)%である。
このスキームは、安定化器量子誤り訂正プロトコルの幅広いクラスにおいて必須な構成要素である。
論文 参考訳(メタデータ) (2021-07-13T20:08:04Z) - Depth-efficient proofs of quantumness [77.34726150561087]
量子性の証明は、古典的検証器が信頼できない証明器の量子的利点を効率的に証明できる挑戦応答プロトコルの一種である。
本稿では、証明者が量子回路を一定深度でしか実行できない量子性構成の証明を2つ与える。
論文 参考訳(メタデータ) (2021-07-05T17:45:41Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
量子情報源の認証は、量子情報処理のための信頼性と効率的なプロトコルを構築する上で重要な課題である。
我々は、有限複写方式におけるIDI仮定のない量子状態のデバイス非依存検証のための体系的なアプローチを開発する。
デバイス非依存の検証を最適なサンプル効率で行うことができることを示す。
論文 参考訳(メタデータ) (2021-05-12T17:48:04Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
本稿では,現実的な雑音に依拠する新しい量子通信方式を提案する。
性能分析の結果,提案手法は競争力のあるQBER, 利得, 利得を提供することがわかった。
論文 参考訳(メタデータ) (2020-12-22T13:06:12Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z) - Self-testing of a single quantum device under computational assumptions [7.716156977428555]
自己検査は、古典的な入出力相関のみに基づいて任意の量子システムを特徴づける手法である。
我々は、実際には実施が難しい複数の非通信当事者の設定を、1つの計算上の有界な当事者によって置き換える。
論文 参考訳(メタデータ) (2020-01-24T19:00:15Z) - Experimental characterisation of unsharp qubit observables and
sequential measurement incompatibility via quantum random access codes [0.0]
逐次通信プロトコルにおける非シャープ量子ビット計測の実験的実装について報告する。
プロトコルは3つのパーティで構成されており、第1のパーティはキュービットシステムを準備し、第2のパーティは古典的および量子的な結果を返す操作を行い、第2のパーティは第3のパーティによって測定される。
論文 参考訳(メタデータ) (2020-01-14T13:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。