Non-Classicality and Non-adiabaticity in a Single Trapped Ion
- URL: http://arxiv.org/abs/2411.04241v1
- Date: Wed, 06 Nov 2024 20:10:35 GMT
- Title: Non-Classicality and Non-adiabaticity in a Single Trapped Ion
- Authors: C. F. P. Avalos, M. C. de Oliveira,
- Abstract summary: Trapped ion systems show a quantum advantage in quantum sensing, quantum information processing and quantum thermodynamics.
We analyze the non-classical characteristics of a system described by a single ion trapped by a periodic potential field.
- Score: 0.0
- License:
- Abstract: Trapped ion systems present non-classical characteristics such as squeezed states that show a quantum advantage in quantum sensing, quantum information processing and quantum thermodynamics. We analyze the non-classical characteristics of a system described by a single ion trapped by a periodic potential field. Within the regime of non-adiabatic manipulation of the potential field, the dynamics of motion of the center of mass of the ion can be described by a dimensionless parameter called the non-adiabatic parameter $Q^{*}$. This parameter allows us to distinguish the classical and non-classical characteristics of the system. Using the equations of motion of observables in the Heisenberg picture, we propose an analysis of the unitary time evolution operator and discuss the squeezing behavior in the state of motion of the ion. The results shown can serve as a basis to discuss the presence of squeezing as a resource in quantum thermodynamics in the non-adiabatic regime in actual achievable experimental limitations.
Related papers
- Megastable quantization in self-excited systems [0.0]
A classical particle in a confining potential gives rise to a Hamiltonian conservative dynamical system.
The corresponding quantum particle exhibits countably infinite discrete energy levels.
Our formalism can be extended to self-excited particles in general confining potentials.
arXiv Detail & Related papers (2024-06-06T09:40:57Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Area laws and thermalization from classical entropies in a Bose-Einstein condensate [0.0]
Local quantum entropies are nonlinear functionals of the underlying quantum state.
We show that suitably chosen classical entropies capture the very same features as their quantum analogs.
arXiv Detail & Related papers (2024-04-18T16:53:03Z) - Dynamics of quantum discommensurations in the Frenkel-Kontorova chain [30.733286944793527]
We study how imperfections present in concrete implementations of the Frenkel-Kontorova model affect the properties of topological defects.
We analyze the propagation and scattering of solitons, examining the role of quantum fluctuations and imperfections in influencing these processes.
arXiv Detail & Related papers (2024-01-23T10:12:45Z) - Non-equilibrium quantum probing through linear response [41.94295877935867]
We study the system's response to unitary perturbations, as well as non-unitary perturbations, affecting the properties of the environment.
We show that linear response, combined with a quantum probing approach, can effectively provide valuable quantitative information about the perturbation and characteristics of the environment.
arXiv Detail & Related papers (2023-06-14T13:31:23Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Nonlinear Description of Quantum Dynamics. Generalized Coherent States [0.0]
In this work it is shown that there is an inherent nonlinear evolution in the dynamics of the so-called generalized coherent states.
The immersion of a classical manifold into the Hilbert space of quantum mechanics is employed.
arXiv Detail & Related papers (2020-09-07T16:47:51Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Nonergodic Quantum Dynamics from Deformations of Classical Cellular
Automata [0.0]
We show that every classical CA defines a family of generically non-integrable, periodically-driven (Floquet) quantum dynamics with exact, nonthermal eigenstates.
Results establish classical CAs as parent models for a class of quantum chaotic systems with rare nonthermal eigenstates.
arXiv Detail & Related papers (2020-06-03T18:00:01Z) - Unconditional accumulation of nonclassicality in a single-atom
mechanical oscillator [0.0]
We report on the robust experimental accumulation of nonclassicallity of motion of a single trapped ion.
The nonclassicality stems from deterministic incoherent modulation of thermal phonon number distribution.
We show that the repetitive application of this nonlinear process monotonically accumulates the observable state nonclassicality.
arXiv Detail & Related papers (2020-04-27T15:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.