Robust Real-Time Mortality Prediction in the Intensive Care Unit using Temporal Difference Learning
- URL: http://arxiv.org/abs/2411.04285v1
- Date: Wed, 06 Nov 2024 22:11:20 GMT
- Title: Robust Real-Time Mortality Prediction in the Intensive Care Unit using Temporal Difference Learning
- Authors: Thomas Frost, Kezhi Li, Steve Harris,
- Abstract summary: Temporal difference (TD) learning, a common reinforcement learning technique, may reduce variance by generalising learning to the pattern of state transitions rather than terminal outcomes.
In this study, we define a framework for applying TD learning to real-time irregularly sampled time series data using a Semi-Markov Reward Process.
We evaluate the model framework in predicting intensive care mortality and show that TD learning under this framework can result in improved model robustness compared to standard supervised learning methods.
- Score: 3.6548171581505375
- License:
- Abstract: The task of predicting long-term patient outcomes using supervised machine learning is a challenging one, in part because of the high variance of each patient's trajectory, which can result in the model over-fitting to the training data. Temporal difference (TD) learning, a common reinforcement learning technique, may reduce variance by generalising learning to the pattern of state transitions rather than terminal outcomes. However, in healthcare this method requires several strong assumptions about patient states, and there appears to be limited literature evaluating the performance of TD learning against traditional supervised learning methods for long-term health outcome prediction tasks. In this study, we define a framework for applying TD learning to real-time irregularly sampled time series data using a Semi-Markov Reward Process. We evaluate the model framework in predicting intensive care mortality and show that TD learning under this framework can result in improved model robustness compared to standard supervised learning methods. and that this robustness is maintained even when validated on external datasets. This approach may offer a more reliable method when learning to predict patient outcomes using high-variance irregular time series data.
Related papers
- Towards Interpretable End-Stage Renal Disease (ESRD) Prediction: Utilizing Administrative Claims Data with Explainable AI Techniques [6.417777780911223]
This study explores the potential of utilizing administrative claims data, combined with advanced machine learning and deep learning techniques, to predict the progression of Chronic Kidney Disease (CKD) to End-Stage Renal Disease (ESRD)
We analyze a comprehensive, 10-year dataset provided by a major health insurance organization to develop prediction models for multiple observation windows using traditional machine learning methods such as Random Forest and XGBoost as well as deep learning approaches such as Long Short-Term Memory (LSTM) networks.
Our findings demonstrate that the LSTM model, particularly with a 24-month observation window, exhibits superior performance in predicting ESRD progression,
arXiv Detail & Related papers (2024-09-18T16:03:57Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - A Knowledge Distillation Approach for Sepsis Outcome Prediction from
Multivariate Clinical Time Series [2.621671379723151]
We use knowledge distillation via constrained variational inference to distill the knowledge of a powerful "teacher" neural network model.
We train a "student" latent variable model to learn interpretable hidden state representations to achieve high predictive performance for sepsis outcome prediction.
arXiv Detail & Related papers (2023-11-16T05:06:51Z) - Contrastive Learning-based Imputation-Prediction Networks for
In-hospital Mortality Risk Modeling using EHRs [9.578930989075035]
This paper presents a contrastive learning-based imputation-prediction network for predicting in-hospital mortality risks using EHR data.
Our approach introduces graph analysis-based patient stratification modeling in the imputation process to group similar patients.
Experiments on two real-world EHR datasets show that our approach outperforms the state-of-the-art approaches in both imputation and prediction tasks.
arXiv Detail & Related papers (2023-08-19T03:24:34Z) - Accounting For Informative Sampling When Learning to Forecast Treatment
Outcomes Over Time [66.08455276899578]
We show that informative sampling can prohibit accurate estimation of treatment outcomes if not properly accounted for.
We present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting.
We propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs.
arXiv Detail & Related papers (2023-06-07T08:51:06Z) - Adapting to Continuous Covariate Shift via Online Density Ratio Estimation [64.8027122329609]
Dealing with distribution shifts is one of the central challenges for modern machine learning.
We propose an online method that can appropriately reuse historical information.
Our density ratio estimation method is proven to perform well by enjoying a dynamic regret bound.
arXiv Detail & Related papers (2023-02-06T04:03:33Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Predicting the impact of treatments over time with uncertainty aware
neural differential equations [2.099922236065961]
We propose Counterfactual ODE, a novel method to predict the impact of treatments continuously over time.
We demonstrate over several longitudinal data sets that CF-ODE provides more accurate predictions and more reliable uncertainty estimates than previously available methods.
arXiv Detail & Related papers (2022-02-24T09:50:02Z) - Learning Predictive and Interpretable Timeseries Summaries from ICU Data [33.787187660310444]
We propose a new procedure to learn summaries of clinical time-series that are both predictive and easily understood by humans.
Our learned summaries outperform traditional interpretable model classes and achieve performance comparable to state-of-the-art deep learning models on an in-hospital mortality classification task.
arXiv Detail & Related papers (2021-09-22T21:14:05Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.