論文の概要: Graph Structure Learning with Bi-level Optimization
- arxiv url: http://arxiv.org/abs/2411.17062v1
- Date: Tue, 26 Nov 2024 03:00:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:36:54.949293
- Title: Graph Structure Learning with Bi-level Optimization
- Title(参考訳): 双方向最適化によるグラフ構造学習
- Authors: Nan Yin,
- Abstract要約: 本稿では,グラフネットワーク(GNN)のロバスト性を改善するため,グラフ構造学習(GSL)手法を提案する。
本稿では,GNNを学習構造や共通パラメータの形で変換する汎用構造抽出器を提案する。
グラフ構造学習(GSEBO)のための2段階最適化を用いた新しい二段階最適化, ie textitGeneric Structure extract として学習過程をモデル化する。
提案したGSEBOを古典的GNN上でインスタンス化し、最先端のGSL手法と比較する。
- 参考スコア(独自算出の注目度): 2.2435959256503377
- License:
- Abstract: Currently, most Graph Structure Learning (GSL) methods, as a means of learning graph structure, improve the robustness of GNN merely from a local view by considering the local information related to each edge and indiscriminately applying the mechanism across edges, which may suffer from the local structure heterogeneity of the graph (\ie the uneven distribution of inter-class connections over nodes). To overcome the cons, we extract the graph structure as a learnable parameter and jointly learn the structure and common parameters of GNN from the global view. Excitingly, the common parameters contain the global information for nodes features mapping, which is also crucial for structure optimization (\ie optimizing the structure relies on global mapping information). Mathematically, we apply a generic structure extractor to abstract the graph structure and transform GNNs in the form of learning structure and common parameters. Then, we model the learning process as a novel bi-level optimization, \ie \textit{Generic Structure Extraction with Bi-level Optimization for Graph Structure Learning (GSEBO)}, which optimizes GNN parameters in the upper level to obtain the global mapping information and graph structure is optimized in the lower level with the global information learned from the upper level. We instantiate the proposed GSEBO on classical GNNs and compare it with the state-of-the-art GSL methods. Extensive experiments validate the effectiveness of the proposed GSEBO on four real-world datasets.
- Abstract(参考訳): 現在、グラフ構造を学習する手段として、ほとんどのグラフ構造学習(GSL)法は、各エッジに関連する局所的な情報を考慮し、グラフの局所的な構造の不均一性(ノード上のクラス間接続の不均一な分布)に悩まされるエッジを無差別に適用することによって、GNNのロバスト性を局所的な視点から改善している。
この欠点を克服するため,学習可能なパラメータとしてグラフ構造を抽出し,グローバルな視点からGNNの構造と共通パラメータを共同で学習する。
興味深いことに、共通パラメータには、ノードの特徴を持つマッピングのグローバル情報が含まれており、これは構造最適化にも不可欠である(構造を最適化するのはグローバルマッピング情報に依存する)。
数学的には、グラフ構造を抽象化し、GNNを学習構造と共通パラメータの形で変換するために、汎用構造抽出器を適用する。
そして,この学習過程を,グラフ構造学習(GSEBO)の2段階最適化による新たな2段階最適化としてモデル化し,GNNパラメータを上位レベルに最適化し,上位レベルから学習したグローバル情報を用いて,下位レベルにおいてグラフ構造を最適化する。
提案したGSEBOを古典的GNN上でインスタンス化し、最先端のGSL手法と比較する。
4つの実世界のデータセットに対して提案したGSEBOの有効性を検証する。
関連論文リスト
- GaGSL: Global-augmented Graph Structure Learning via Graph Information Bottleneck [5.943641527857957]
我々は,TextitGlobal-augmented Graph Structure Learning (GaGSL) という新しい手法を提案する。
GaGSLの背景にある重要な考え方は、ノード分類タスクのためのコンパクトで情報的なグラフ構造を学ぶことである。
さまざまなデータセットにわたる包括的な評価は、最先端の手法と比較して、GaGSLの優れた性能と堅牢性を示している。
論文 参考訳(メタデータ) (2024-11-07T01:23:48Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
グラフニューラルネットワーク(GNN)は、構造的データ学習のデファクトソリューションである。
既存のグラフ構造学習(GSL)フレームワークには、堅牢性と解釈性がない。
本稿では、構造エントロピーと符号化木に抽象化されたグラフ階層を通して、一般的なGSLフレームワークSE-GSLを提案する。
論文 参考訳(メタデータ) (2023-03-17T05:20:24Z) - Structure-Preserving Graph Representation Learning [43.43429108503634]
本研究では,グラフの構造情報を完全にキャプチャする構造保存グラフ表現学習(SPGRL)手法を提案する。
具体的には、元のグラフの不確かさと誤情報を減らすために、k-Nearest Neighbor法による補完的なビューとして特徴グラフを構築する。
本手法は、半教師付きノード分類タスクにおいて非常に優れた性能を示し、グラフ構造やノード特徴に対するノイズ摂動下での堅牢性に優れる。
論文 参考訳(メタデータ) (2022-09-02T02:49:19Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
本稿では,学習したグラフトポロジを外部ガイダンスなしでデータ自身で最適化する,教師なしグラフ構造学習パラダイムを提案する。
具体的には、元のデータから"アンカーグラフ"として学習目標を生成し、対照的な損失を用いてアンカーグラフと学習グラフとの一致を最大化する。
論文 参考訳(メタデータ) (2022-01-17T11:57:29Z) - Compact Graph Structure Learning via Mutual Information Compression [79.225671302689]
グラフ構造学習(GSL)は、グラフニューラルネットワーク(GNN)のグラフ構造と学習パラメータを最適化する能力に大きな注目を集めている。
我々は、MI圧縮によるコンパクトGSLアーキテクチャ、CoGSLを提案する。
クリーンで攻撃的な条件下で複数のデータセットに対して広範な実験を行い、CoGSLの有効性とロバスト性を実証した。
論文 参考訳(メタデータ) (2022-01-14T16:22:33Z) - Learnable Structural Semantic Readout for Graph Classification [23.78861906423389]
位置レベルでのノード表現を要約するために,構造的セマンティック・リードアウト(SSRead)を提案する。
SSReadは、ノードと構造プロトタイプ間のセマンティックアライメントを使用することで、構造的に意味のある位置を特定することを目的としている。
実験の結果,SSReadはGNN分類器の分類性能と解釈可能性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2021-11-22T20:44:27Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Deep graph learning for semi-supervised classification [11.260083018676548]
グラフ学習(GL)は、グラフ畳み込みネットワーク(GCN)に基づくデータの分布構造(グラフ構造)を動的に捉えることができる
既存の手法は主に計算層と関連する損失をGCNに組み合わせ、グローバルグラフや局所グラフを探索する。
半教師付き分類において,より優れたグラフ表現を求めるためにディープグラフ学習(DGL)を提案する。
論文 参考訳(メタデータ) (2020-05-29T05:59:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。