Towards Unifying Interpretability and Control: Evaluation via Intervention
- URL: http://arxiv.org/abs/2411.04430v2
- Date: Mon, 10 Feb 2025 19:55:17 GMT
- Title: Towards Unifying Interpretability and Control: Evaluation via Intervention
- Authors: Usha Bhalla, Suraj Srinivas, Asma Ghandeharioun, Himabindu Lakkaraju,
- Abstract summary: We argue that intervention is a fundamental goal of interpretability and introduce success criteria to evaluate how well methods can control model behavior through interventions.
We extend four popular interpretability methods-sparse autoencoders, logit lens, tuned lens, and probing-into an abstract encoder-decoder framework.
We introduce two new evaluation metrics: intervention success rate and coherence-intervention tradeoff, designed to measure the accuracy of explanations and their utility in controlling model behavior.
- Score: 25.4582941170387
- License:
- Abstract: With the growing complexity and capability of large language models, a need to understand model reasoning has emerged, often motivated by an underlying goal of controlling and aligning models. While numerous interpretability and steering methods have been proposed as solutions, they are typically designed either for understanding or for control, seldom addressing both. Additionally, the lack of standardized applications, motivations, and evaluation metrics makes it difficult to assess methods' practical utility and efficacy. To address the aforementioned issues, we argue that intervention is a fundamental goal of interpretability and introduce success criteria to evaluate how well methods can control model behavior through interventions. To evaluate existing methods for this ability, we unify and extend four popular interpretability methods-sparse autoencoders, logit lens, tuned lens, and probing-into an abstract encoder-decoder framework, enabling interventions on interpretable features that can be mapped back to latent representations to control model outputs. We introduce two new evaluation metrics: intervention success rate and coherence-intervention tradeoff, designed to measure the accuracy of explanations and their utility in controlling model behavior. Our findings reveal that (1) while current methods allow for intervention, their effectiveness is inconsistent across features and models, (2) lens-based methods outperform SAEs and probes in achieving simple, concrete interventions, and (3) mechanistic interventions often compromise model coherence, underperforming simpler alternatives, such as prompting, and highlighting a critical shortcoming of current interpretability approaches in applications requiring control.
Related papers
- Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.
Models may behave unreliably due to poorly explored failure modes.
causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Composable Interventions for Language Models [60.32695044723103]
Test-time interventions for language models can enhance factual accuracy, mitigate harmful outputs, and improve model efficiency without costly retraining.
But despite a flood of new methods, different types of interventions are largely developing independently.
We introduce composable interventions, a framework to study the effects of using multiple interventions on the same language models.
arXiv Detail & Related papers (2024-07-09T01:17:44Z) - A Closer Look at the Intervention Procedure of Concept Bottleneck Models [18.222350428973343]
Concept bottleneck models (CBMs) are a class of interpretable neural network models that predict the target response of a given input based on its high-level concepts.
CBMs enable domain experts to intervene on the predicted concepts and rectify any mistakes at test time, so that more accurate task predictions can be made at the end.
We develop various ways of selecting intervening concepts to improve the intervention effectiveness and conduct an array of in-depth analyses as to how they evolve under different circumstances.
arXiv Detail & Related papers (2023-02-28T02:37:24Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
Key challenge for robotic systems is to figure out the behavior of another agent.
Processing correct inferences is especially challenging when (confounding) factors are not controlled experimentally.
We propose equipping robots with the necessary tools to conduct observational studies on people.
arXiv Detail & Related papers (2022-01-27T22:15:56Z) - Multicriteria interpretability driven Deep Learning [0.0]
Deep Learning methods are renowned for their performances, yet their lack of interpretability prevents them from high-stakes contexts.
Recent model methods address this problem by providing post-hoc interpretability methods by reverse-engineering the model's inner workings.
We propose a Multicriteria agnostic technique that allows to control the feature effects on the model's outcome by injecting knowledge in the objective function.
arXiv Detail & Related papers (2021-11-28T09:41:13Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Calibrating Healthcare AI: Towards Reliable and Interpretable Deep
Predictive Models [41.58945927669956]
We argue that these two objectives are not necessarily disparate and propose to utilize prediction calibration to meet both objectives.
Our approach is comprised of a calibration-driven learning method, which is also used to design an interpretability technique based on counterfactual reasoning.
arXiv Detail & Related papers (2020-04-27T22:15:17Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.