論文の概要: GPT-Guided Monte Carlo Tree Search for Symbolic Regression in Financial Fraud Detection
- arxiv url: http://arxiv.org/abs/2411.04459v1
- Date: Thu, 07 Nov 2024 06:12:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:37:15.822100
- Title: GPT-Guided Monte Carlo Tree Search for Symbolic Regression in Financial Fraud Detection
- Title(参考訳): GPT-Guided Monte Carlo Tree Search for Symbolic Regression in Financial Fraud Detection
- Authors: Prashank Kadam,
- Abstract要約: SR-MCTSは基本GPTモデルを用いてMCTSを誘導し、その収束速度と生成した表現の品質を大幅に向上させる。
我々の実験では、SR-MCTSは業界で広く使われている手法よりも、より効率的に不正を検知できることが示されている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: With the increasing number of financial services available online, the rate of financial fraud has also been increasing. The traffic and transaction rates on the internet have increased considerably, leading to a need for fast decision-making. Financial institutions also have stringent regulations that often require transparency and explainability of the decision-making process. However, most state-of-the-art algorithms currently used in the industry are highly parameterized black-box models that rely on complex computations to generate a score. These algorithms are inherently slow and lack the explainability and speed of traditional rule-based learners. This work introduces SR-MCTS (Symbolic Regression MCTS), which utilizes a foundational GPT model to guide the MCTS, significantly enhancing its convergence speed and the quality of the generated expressions which are further extracted to rules. Our experiments show that SR-MCTS can detect fraud more efficiently than widely used methods in the industry while providing substantial insights into the decision-making process.
- Abstract(参考訳): オンラインで利用できる金融サービスの増加に伴い、金融詐欺の頻度も高まっている。
インターネット上のトラフィックと取引レートは大幅に増加し、迅速な意思決定が必要になった。
また、金融機関は意思決定プロセスの透明性と説明責任をしばしば要求する厳格な規制を課している。
しかし、現在業界で使われている最先端のアルゴリズムのほとんどは、スコアを生成するために複雑な計算に依存する非常にパラメータ化されたブラックボックスモデルである。
これらのアルゴリズムは本質的に遅く、従来のルールベースの学習者の説明可能性や速度に欠ける。
本稿では,基本GPTモデルを用いてMCTSを誘導するSR-MCTS(Symbolic Regression MCTS)を導入する。
実験の結果,SR-MCTSは業界で広く使われている手法よりも効果的な不正検出が可能であり,意思決定プロセスに関する重要な知見が得られた。
関連論文リスト
- Step-by-Step Reasoning for Math Problems via Twisted Sequential Monte Carlo [55.452453947359736]
Twisted Sequential Monte Carlo(TSMC)に基づく新しい検証手法を提案する。
TSMCを大規模言語モデルに適用し、部分解に対する将来的な報酬を推定する。
このアプローチは、ステップワイドなヒューマンアノテーションを必要としない、より直接的なトレーニングターゲットをもたらす。
論文 参考訳(メタデータ) (2024-10-02T18:17:54Z) - Advanced Financial Fraud Detection Using GNN-CL Model [13.5240775562349]
本稿では,金融不正検出の分野において,革新的なGNN-CLモデルを提案する。
グラフニューラルネットワーク(gnn)、畳み込みニューラルネットワーク(cnn)、長期記憶(LSTM)の利点を組み合わせる。
本稿では,マルチ層パーセプトロン(MLPS)を用いてノードの類似性を推定する。
論文 参考訳(メタデータ) (2024-07-09T03:59:06Z) - Large Language Models-guided Dynamic Adaptation for Temporal Knowledge Graph Reasoning [87.10396098919013]
大規模言語モデル (LLM) は、時間的推論において広範な知識と卓越した能力を示した。
本稿では,時間的知識グラフに基づく推論のためのLarge Language Models-Guided Dynamic Adaptation (LLM-DA)法を提案する。
LLM-DAは、歴史的データを解析し、時間的論理規則を抽出するLLMの機能を利用する。
論文 参考訳(メタデータ) (2024-05-23T04:54:37Z) - Securing Transactions: A Hybrid Dependable Ensemble Machine Learning
Model using IHT-LR and Grid Search [2.4374097382908477]
本稿では,複数のアルゴリズムをインテリジェントに組み合わせて不正識別を強化する,最先端のハイブリッドアンサンブル(ENS)機械学習(ML)モデルを提案する。
実験は,284,807件の取引からなる公開クレジットカードデータセットを用いて実施した。
提案したモデルは、99.66%、99.73%、98.56%、99.79%の精度で、それぞれDT、RF、KNN、ENSモデルに完全100%の精度を実現している。
論文 参考訳(メタデータ) (2024-02-22T09:01:42Z) - Explainable Fraud Detection with Deep Symbolic Classification [4.1205832766381985]
分類問題に対するDeep Symbolic Regressionフレームワークの拡張であるDeep Classificationを提案する。
関数は閉形式で簡潔な数学的表現であるため、モデルは1つの分類決定のレベルとモデルの決定過程の両方において本質的に説明可能である。
PaySimデータセットの評価は、最先端のモデルと競合する予測性能を示しながら、説明可能性の観点からそれらを上回っている。
論文 参考訳(メタデータ) (2023-12-01T13:50:55Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - IBP Regularization for Verified Adversarial Robustness via
Branch-and-Bound [85.6899802468343]
IBP-Rは, どちらも簡便なトレーニングアルゴリズムである。
また、$beta$-CROWNに基づく新しいロバスト性であるUPBを提示し、最先端の分岐アルゴリズムのコストを削減する。
論文 参考訳(メタデータ) (2022-06-29T17:13:25Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Application of Deep Reinforcement Learning to Payment Fraud [0.0]
典型的な不正検出システムは、詐欺リコール率の最大化に重点を置く標準的な教師付き学習手法を用いる。
このような定式化は準最適解につながると我々は主張する。
我々は、報酬関数の形でモデル内に実用性を含めることで、不正検出を逐次決定問題として定式化する。
論文 参考訳(メタデータ) (2021-12-08T11:30:53Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
本稿では,高頻度金融時系列を扱うディープニューラルネットワークのための新しいデータ駆動正規化手法を提案する。
提案手法は,財務時系列のバイモーダル特性を考慮したものである。
我々の実験は最先端のニューラルネットワークと高周波データを用いて行われ、他の正規化技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2021-09-01T07:52:03Z) - A Time-Frequency based Suspicious Activity Detection for Anti-Money
Laundering [0.0]
マネーロンダリングは、犯罪者が犯罪の収益を金融システムに注入するために使う重要なメカニズムである。
これらの機関の現在のシステムのほとんどはルールベースであり、非効率である。
本稿では、金融取引の2次元表現を利用した時間周波数分析に基づく新しい特徴セットを提案する。
論文 参考訳(メタデータ) (2020-11-17T08:01:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。