論文の概要: Verification of Neural Networks against Convolutional Perturbations via Parameterised Kernels
- arxiv url: http://arxiv.org/abs/2411.04594v1
- Date: Thu, 07 Nov 2024 10:25:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:40:29.743644
- Title: Verification of Neural Networks against Convolutional Perturbations via Parameterised Kernels
- Title(参考訳): パラメータ化カーネルによる畳み込み摂動に対するニューラルネットワークの検証
- Authors: Benedikt Brückner, Alessio Lomuscio,
- Abstract要約: 本研究では,ブラーリングやシャープニングなどの畳み込み摂動に対するニューラルネットワークの有効検証法を開発した。
入力摂動を定義するには、よく知られたカメラシェイク、ボックスのぼかし、カーネルをシャープする。
ニューラルネットワーク検証におけるそれらの使用を容易にするため、パラメータ化されたカーネルで与えられた入力を効果的に結合する方法を開発した。
- 参考スコア(独自算出の注目度): 18.052298354970258
- License:
- Abstract: We develop a method for the efficient verification of neural networks against convolutional perturbations such as blurring or sharpening. To define input perturbations we use well-known camera shake, box blur and sharpen kernels. We demonstrate that these kernels can be linearly parameterised in a way that allows for a variation of the perturbation strength while preserving desired kernel properties. To facilitate their use in neural network verification, we develop an efficient way of convolving a given input with these parameterised kernels. The result of this convolution can be used to encode the perturbation in a verification setting by prepending a linear layer to a given network. This leads to tight bounds and a high effectiveness in the resulting verification step. We add further precision by employing input splitting as a branch and bound strategy. We demonstrate that we are able to verify robustness on a number of standard benchmarks where the baseline is unable to provide any safety certificates. To the best of our knowledge, this is the first solution for verifying robustness against specific convolutional perturbations such as camera shake.
- Abstract(参考訳): 本研究では,ブラーリングやシャープニングなどの畳み込み摂動に対するニューラルネットワークの有効検証法を開発した。
入力摂動を定義するには、よく知られたカメラシェイク、ボックスのぼかし、カーネルをシャープする。
これらのカーネルは、所望のカーネル特性を保持しながら摂動強度の変動を可能にする方法で線形パラメータ化可能であることを実証する。
ニューラルネットワーク検証におけるそれらの使用を容易にするため、パラメータ化されたカーネルで与えられた入力を効果的に結合する方法を開発した。
この畳み込みの結果は、線形層を所定のネットワークにプリプドすることで、検証設定における摂動を符号化することができる。
これは厳密な境界を導き、その結果の検証ステップにおいて高い有効性をもたらす。
入力分割を分岐および境界戦略として用いることにより、さらなる精度を付加する。
私たちは、ベースラインが安全証明書を提供できない、多くの標準ベンチマークで堅牢性を検証することができることを実証しています。
我々の知る限りでは、これはカメラシェイクのような特定の畳み込み摂動に対する堅牢性を検証するための最初の解決策である。
関連論文リスト
- Convex neural network synthesis for robustness in the 1-norm [0.0]
本稿では,より堅牢なニューラルネットワークの近似を生成する手法を提案する。
モデル予測制御の堅牢化への応用は、その結果を示すために用いられる。
論文 参考訳(メタデータ) (2024-05-29T12:17:09Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
我々は「ガウス雑音下での精度」を、入力に対する対角的ロバスト性の容易に計算可能なプロキシとして利用する。
実験の結果, 提案手法は, 最先端の訓練手法による信頼性向上を継続的に示すことがわかった。
論文 参考訳(メタデータ) (2022-12-18T03:57:12Z) - Robust Explanation Constraints for Neural Networks [33.14373978947437]
ニューラルネットワークの意図で使われるポストホックな説明法は、しばしば彼らの出力を信頼するのに役立つと言われている。
我々のトレーニング方法は、ニューラルネットワークを学習できる唯一の方法であり、6つのテストネットワークでテストされた堅牢性に関する洞察を持つ。
論文 参考訳(メタデータ) (2022-12-16T14:40:25Z) - Towards Practical Control of Singular Values of Convolutional Layers [65.25070864775793]
畳み込みニューラルネットワーク(CNN)の訓練は容易であるが、一般化誤差や対向ロバスト性といった基本的な特性は制御が難しい。
最近の研究では、畳み込み層の特異値がそのような解像特性に顕著に影響を及ぼすことが示された。
我々は,レイヤ表現力の著しく低下を犠牲にして,先行技術の制約を緩和するための原則的アプローチを提供する。
論文 参考訳(メタデータ) (2022-11-24T19:09:44Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - SmoothMix: Training Confidence-calibrated Smoothed Classifiers for
Certified Robustness [61.212486108346695]
自己混合によるスムーズな分類器のロバスト性を制御するためのトレーニングスキームSmoothMixを提案する。
提案手法は, 厳密性に制限された原因として, 信頼性の低い, オフクラスに近いサンプルを効果的に同定する。
提案手法はスムーズな分類器の検証値である$ell$-robustnessを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2021-11-17T18:20:59Z) - An Orthogonal Classifier for Improving the Adversarial Robustness of
Neural Networks [21.13588742648554]
近年の研究では、分類層に特定の変更を加えることで、ニューラルネットワークの堅牢性を向上させることが示されている。
我々は、成分が同じ大きさの高密度直交重み行列を明示的に構築し、新しいロバストな分類器を生み出す。
我々の方法は、多くの最先端の防衛アプローチに対して効率的で競争力がある。
論文 参考訳(メタデータ) (2021-05-19T13:12:14Z) - Performance Bounds for Neural Network Estimators: Applications in Fault
Detection [2.388501293246858]
ニューラルネットワークの堅牢性を定量化し,モデルに基づく異常検知器の構築とチューニングを行った。
チューニングでは,通常動作で想定される誤報発生率の上限を具体的に提示する。
論文 参考訳(メタデータ) (2021-03-22T19:23:08Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。