論文の概要: Performance Bounds for Neural Network Estimators: Applications in Fault
Detection
- arxiv url: http://arxiv.org/abs/2103.12141v1
- Date: Mon, 22 Mar 2021 19:23:08 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-25 04:56:00.382585
- Title: Performance Bounds for Neural Network Estimators: Applications in Fault
Detection
- Title(参考訳): ニューラルネットワーク推定器の性能境界:故障検出への応用
- Authors: Navid Hashemi, Mahyar Fazlyab, Justin Ruths
- Abstract要約: ニューラルネットワークの堅牢性を定量化し,モデルに基づく異常検知器の構築とチューニングを行った。
チューニングでは,通常動作で想定される誤報発生率の上限を具体的に提示する。
- 参考スコア(独自算出の注目度): 2.388501293246858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We exploit recent results in quantifying the robustness of neural networks to
input variations to construct and tune a model-based anomaly detector, where
the data-driven estimator model is provided by an autoregressive neural
network. In tuning, we specifically provide upper bounds on the rate of false
alarms expected under normal operation. To accomplish this, we provide a theory
extension to allow for the propagation of multiple confidence ellipsoids
through a neural network. The ellipsoid that bounds the output of the neural
network under the input variation informs the sensitivity - and thus the
threshold tuning - of the detector. We demonstrate this approach on a linear
and nonlinear dynamical system.
- Abstract(参考訳): 本研究では,データ駆動型推定器モデルが自己回帰型ニューラルネットワークによって提供されるモデルに基づく異常検出器を構築・調整するために,ニューラルネットワークのロバスト性を定量化する最近の結果を活用する。
チューニングでは,通常動作で想定される誤報発生率の上限を具体的に提示する。
これを実現するために,ニューラルネットワークによる複数の信頼楕円体の伝播を可能にする理論拡張を提案する。
入力変動の下でニューラルネットワークの出力を束縛する楕円体は、検出器の感度、すなわちしきい値調整を知らせる。
この手法を線形および非線形力学系上で実証する。
関連論文リスト
- Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - An Estimator for the Sensitivity to Perturbations of Deep Neural
Networks [0.31498833540989407]
本稿では,入力の摂動に対して与えられたディープニューラルネットワークの感度を予測できる推定器を導出する。
推定器の近似は、ImageNetデータセットを使用して、AlexNetとVGG-19の2つの畳み込みニューラルネットワークでテストされる。
論文 参考訳(メタデータ) (2023-07-24T10:33:32Z) - Guaranteed Quantization Error Computation for Neural Network Model
Compression [2.610470075814367]
ニューラルネットワークモデル圧縮技術は、産業システムの組み込みデバイス上でのディープニューラルネットワークの計算問題に対処することができる。
統合されたニューラルネットワークは、フィードフォワードニューラルネットワークとその量子化されたバージョンから構築され、2つのニューラルネットワーク間の正確な出力差を生成する。
論文 参考訳(メタデータ) (2023-04-26T20:21:54Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Fast Adaptation with Linearized Neural Networks [35.43406281230279]
ニューラルネットワークの線形化の帰納的バイアスについて検討し,全ネットワーク関数の驚くほどよい要約であることを示した。
この発見に触発されて,これらの帰納的バイアスをネットワークのヤコビアンから設計されたカーネルを通してガウス過程に埋め込む手法を提案する。
この設定では、領域適応は不確実性推定を伴う解釈可能な後方推論の形式を取る。
論文 参考訳(メタデータ) (2021-03-02T03:23:03Z) - Reduced-Order Neural Network Synthesis with Robustness Guarantees [0.0]
機械学習アルゴリズムは、デバイスがユーザのプライバシを改善し、レイテンシを低減し、エネルギー効率を高めるために、ローカルで実行するように適応されている。
この問題に対処するために、より大きなニューロンの入出力マッピングを近似する低次ニューラルネットワーク(ニューロンが少ない)を自動的に合成する手法を導入する。
この近似誤差に対する最悪の境界が得られ、このアプローチは幅広いニューラルネットワークアーキテクチャに適用することができる。
論文 参考訳(メタデータ) (2021-02-18T12:03:57Z) - Towards Robust Neural Networks via Close-loop Control [12.71446168207573]
深層ニューラルネットワークは、ブラックボックスの性質のため、様々な摂動に弱い。
近年の研究では、入力データが知覚不可能な量で摂動しても、ディープニューラルネットワークがデータを誤分類できることが示されている。
論文 参考訳(メタデータ) (2021-02-03T03:50:35Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。