The Pragmatic Frames of Spurious Correlations in Machine Learning: Interpreting How and Why They Matter
- URL: http://arxiv.org/abs/2411.04696v4
- Date: Tue, 15 Jul 2025 12:30:00 GMT
- Title: The Pragmatic Frames of Spurious Correlations in Machine Learning: Interpreting How and Why They Matter
- Authors: Samuel J. Bell, Skyler Wang,
- Abstract summary: Learning correlations from data forms the foundation of today's machine learning (ML) and artificial intelligence (AI) research.<n>While contemporary methods enable the automatic discovery of complex patterns, they are prone to failure when unintended correlations are captured.<n>This vulnerability has spurred a growing interest in interrogating spuriousness, which is often seen as a threat to model performance, fairness, and robustness.
- Score: 3.475875199871536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning correlations from data forms the foundation of today's machine learning (ML) and artificial intelligence (AI) research. While contemporary methods enable the automatic discovery of complex patterns, they are prone to failure when unintended correlations are captured. This vulnerability has spurred a growing interest in interrogating spuriousness, which is often seen as a threat to model performance, fairness, and robustness. In this article, we trace departures from the conventional statistical definition of spuriousness -- which denotes a non-causal relationship arising from coincidence or confounding -- to examine how its meaning is negotiated in ML research. Rather than relying solely on formal definitions, researchers assess spuriousness through what we call pragmatic frames: judgments based on what a correlation does in practice -- how it affects model behavior, supports or impedes task performance, or aligns with broader normative goals. Drawing on a broad survey of ML literature, we identify four such frames: relevance ("Models should use correlations that are relevant to the task"), generalizability ("Models should use correlations that generalize to unseen data"), human-likeness ("Models should use correlations that a human would use to perform the same task"), and harmfulness ("Models should use correlations that are not socially or ethically harmful"). These representations reveal that correlation desirability is not a fixed statistical property but a situated judgment informed by technical, epistemic, and ethical considerations. By examining how a foundational ML conundrum is problematized in research literature, we contribute to broader conversations on the contingent practices through which technical concepts like spuriousness are defined and operationalized.
Related papers
- Preference Learning for AI Alignment: a Causal Perspective [55.2480439325792]
We frame this problem in a causal paradigm, providing the rich toolbox of causality to identify persistent challenges.<n>Inheriting from the literature of causal inference, we identify key assumptions necessary for reliable generalisation.<n>We illustrate failure modes of naive reward models and demonstrate how causally-inspired approaches can improve model robustness.
arXiv Detail & Related papers (2025-06-06T10:45:42Z) - BiasConnect: Investigating Bias Interactions in Text-to-Image Models [73.76853483463836]
We introduce BiasConnect, a novel tool designed to analyze and quantify bias interactions in Text-to-Image models.<n>Our method provides empirical estimates that indicate how other bias dimensions shift toward or away from an ideal distribution when a given bias is modified.<n>We demonstrate the utility of BiasConnect for selecting optimal bias mitigation axes, comparing different TTI models on the dependencies they learn, and understanding the amplification of intersectional societal biases in TTI models.
arXiv Detail & Related papers (2025-03-12T19:01:41Z) - Enforcing Fundamental Relations via Adversarial Attacks on Input Parameter Correlations [76.2226569692207]
Correlations between input parameters play a crucial role in many scientific classification tasks.
We present a new adversarial attack algorithm called Random Distribution Shuffle Attack (RDSA)
We demonstrate the RDSA effectiveness on six classification tasks.
arXiv Detail & Related papers (2025-01-09T21:45:09Z) - Towards Robust Text Classification: Mitigating Spurious Correlations with Causal Learning [2.7813683000222653]
We propose the Causally Calibrated Robust ( CCR) to reduce models' reliance on spurious correlations.
CCR integrates a causal feature selection method based on counterfactual reasoning, along with an inverse propensity weighting (IPW) loss function.
We show that CCR state-of-the-art performance among methods without group labels, and in some cases, it can compete with the models that utilize group labels.
arXiv Detail & Related papers (2024-11-01T21:29:07Z) - Mechanism learning: Reverse causal inference in the presence of multiple unknown confounding through front-door causal bootstrapping [0.8901073744693314]
A major limitation of machine learning (ML) prediction models is that they recover associational, rather than causal, predictive relationships between variables.
This paper proposes mechanism learning, a simple method which uses front-door causal bootstrapping to deconfound observational data.
We test our method on fully synthetic, semi-synthetic and real-world datasets, demonstrating that it can discover reliable, unbiased, causal ML predictors.
arXiv Detail & Related papers (2024-10-26T03:34:55Z) - MM-SpuBench: Towards Better Understanding of Spurious Biases in Multimodal LLMs [38.93090238335506]
Spurious bias, a tendency to use spurious correlations between non-essential input attributes and target variables for predictions, has revealed a severe pitfall in deep learning models trained on single modality data.
We introduce MM-SpuBench, a comprehensive visual question-answering (VQA) benchmark designed to evaluate MLLMs' reliance on nine distinct categories of spurious correlations.
Our findings illuminate the persistence of the reliance on spurious correlations from these models and underscore the urge for new methodologies to mitigate spurious biases.
arXiv Detail & Related papers (2024-06-24T20:29:16Z) - Spuriousness-Aware Meta-Learning for Learning Robust Classifiers [26.544938760265136]
Spurious correlations are brittle associations between certain attributes of inputs and target variables.
Deep image classifiers often leverage them for predictions, leading to poor generalization on the data where the correlations do not hold.
Mitigating the impact of spurious correlations is crucial towards robust model generalization, but it often requires annotations of the spurious correlations in data.
arXiv Detail & Related papers (2024-06-15T21:41:25Z) - Spurious Correlations in Machine Learning: A Survey [27.949532561102206]
Machine learning systems are sensitive to spurious correlations between non-essential features of the inputs and labels.
These features and their correlations with the labels are known as "spurious" because they tend to change with shifts in real-world data distributions.
We provide a review of this issue, along with a taxonomy of current state-of-the-art methods for addressing spurious correlations in machine learning models.
arXiv Detail & Related papers (2024-02-20T04:49:34Z) - Measuring and Improving Attentiveness to Partial Inputs with Counterfactuals [91.59906995214209]
We propose a new evaluation method, Counterfactual Attentiveness Test (CAT)
CAT uses counterfactuals by replacing part of the input with its counterpart from a different example, expecting an attentive model to change its prediction.
We show that GPT3 becomes less attentive with an increased number of demonstrations, while its accuracy on the test data improves.
arXiv Detail & Related papers (2023-11-16T06:27:35Z) - Causal Fair Metric: Bridging Causality, Individual Fairness, and
Adversarial Robustness [7.246701762489971]
Adversarial perturbation, used to identify vulnerabilities in models, and individual fairness, aiming for equitable treatment of similar individuals, both depend on metrics to generate comparable input data instances.
Previous attempts to define such joint metrics often lack general assumptions about data or structural causal models and were unable to reflect counterfactual proximity.
This paper introduces a causal fair metric formulated based on causal structures encompassing sensitive attributes and protected causal perturbation.
arXiv Detail & Related papers (2023-10-30T09:53:42Z) - Seeing is not Believing: Robust Reinforcement Learning against Spurious
Correlation [57.351098530477124]
We consider one critical type of robustness against spurious correlation, where different portions of the state do not have correlations induced by unobserved confounders.
A model that learns such useless or even harmful correlation could catastrophically fail when the confounder in the test case deviates from the training one.
Existing robust algorithms that assume simple and unstructured uncertainty sets are therefore inadequate to address this challenge.
arXiv Detail & Related papers (2023-07-15T23:53:37Z) - Stubborn Lexical Bias in Data and Models [50.79738900885665]
We use a new statistical method to examine whether spurious patterns in data appear in models trained on the data.
We apply an optimization approach to *reweight* the training data, reducing thousands of spurious correlations.
Surprisingly, though this method can successfully reduce lexical biases in the training data, we still find strong evidence of corresponding bias in the trained models.
arXiv Detail & Related papers (2023-06-03T20:12:27Z) - Context De-confounded Emotion Recognition [12.037240778629346]
Context-Aware Emotion Recognition (CAER) aims to perceive the emotional states of the target person with contextual information.
A long-overlooked issue is that a context bias in existing datasets leads to a significantly unbalanced distribution of emotional states.
This paper provides a causality-based perspective to disentangle the models from the impact of such bias, and formulate the causalities among variables in the CAER task.
arXiv Detail & Related papers (2023-03-21T15:12:20Z) - Disentanglement and Generalization Under Correlation Shifts [22.499106910581958]
Correlations between factors of variation are prevalent in real-world data.
Machine learning algorithms may benefit from exploiting such correlations, as they can increase predictive performance on noisy data.
We aim to learn representations which capture different factors of variation in latent subspaces.
arXiv Detail & Related papers (2021-12-29T18:55:17Z) - Measuring and Reducing Gendered Correlations in Pre-trained Models [24.35758086428503]
We show how pre-trained models can encode artifacts undesired in many applications, such as professions correlating with one gender more than another.
We show how measured correlations can be reduced with general-purpose techniques, and highlight the trade offs different strategies have.
arXiv Detail & Related papers (2020-10-12T21:15:29Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
A common problem in human-object interaction (HOI) detection task is that numerous HOI classes have only a small number of labeled examples.
We observe that there exist natural correlations and anti-correlations among human-object interactions.
We present techniques to learn these priors and leverage them for more effective training, especially in rare classes.
arXiv Detail & Related papers (2020-07-17T02:47:45Z) - On Disentangled Representations Learned From Correlated Data [59.41587388303554]
We bridge the gap to real-world scenarios by analyzing the behavior of the most prominent disentanglement approaches on correlated data.
We show that systematically induced correlations in the dataset are being learned and reflected in the latent representations.
We also demonstrate how to resolve these latent correlations, either using weak supervision during training or by post-hoc correcting a pre-trained model with a small number of labels.
arXiv Detail & Related papers (2020-06-14T12:47:34Z) - Learning Causal Models Online [103.87959747047158]
Predictive models can rely on spurious correlations in the data for making predictions.
One solution for achieving strong generalization is to incorporate causal structures in the models.
We propose an online algorithm that continually detects and removes spurious features.
arXiv Detail & Related papers (2020-06-12T20:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.