論文の概要: Towards Building Large Scale Datasets and State-of-the-Art Automatic Speech Translation Systems for 14 Indian Languages
- arxiv url: http://arxiv.org/abs/2411.04699v3
- Date: Sat, 31 May 2025 08:18:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-03 20:53:53.045511
- Title: Towards Building Large Scale Datasets and State-of-the-Art Automatic Speech Translation Systems for 14 Indian Languages
- Title(参考訳): 大規模データセットの構築と14言語の自動音声翻訳システムの実現に向けて
- Authors: Ashwin Sankar, Sparsh Jain, Nikhil Narasimhan, Devilal Choudhary, Dhairya Suman, Mohammed Safi Ur Rahman Khan, Anoop Kunchukuttan, Mitesh M Khapra, Raj Dabre,
- Abstract要約: BhasaAnuvaadは、インドの言語で最大の音声翻訳データセットで、4400万時間以上のオーディオと1700万行のテキストセグメントにまたがる。
本実験は, 翻訳品質の向上を実証し, インド語音声翻訳の新しい標準を設定した。
アクセシビリティとコラボレーションを促進するために、許容ライセンス付きのすべてのコード、データ、モデルの重みをオープンソースでリリースします。
- 参考スコア(独自算出の注目度): 27.273651323572786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech translation for Indian languages remains a challenging task due to the scarcity of large-scale, publicly available datasets that capture the linguistic diversity and domain coverage essential for real-world applications. Existing datasets cover a fraction of Indian languages and lack the breadth needed to train robust models that generalize beyond curated benchmarks. To bridge this gap, we introduce BhasaAnuvaad, the largest speech translation dataset for Indian languages, spanning over 44 thousand hours of audio and 17 million aligned text segments across 14 Indian languages and English. Our dataset is built through a threefold methodology: (a) aggregating high-quality existing sources, (b) large-scale web crawling to ensure linguistic and domain diversity, and (c) creating synthetic data to model real-world speech disfluencies. Leveraging BhasaAnuvaad, we train IndicSeamless, a state-of-the-art speech translation model for Indian languages that performs better than existing models. Our experiments demonstrate improvements in the translation quality, setting a new standard for Indian language speech translation. We will release all the code, data and model weights in the open-source, with permissive licenses to promote accessibility and collaboration.
- Abstract(参考訳): インド語の音声翻訳は、実際のアプリケーションに必要な言語多様性とドメインカバレッジをキャプチャする大規模なデータセットが不足しているため、依然として困難な課題である。
既存のデータセットはインドの少数の言語をカバーしており、キュレートされたベンチマークを超えて一般化された堅牢なモデルをトレーニングするために必要な幅が不足している。
このギャップを埋めるために、インドの言語で最大の音声翻訳データセットであるBhasaAnuvaadを紹介します。
私たちのデータセットは3倍の方法論で構築されています。
(a)高品質の既存の資料を集約すること
(b)言語・領域の多様性を確保する大規模なWebクローリング
(c) 実世界の発話障害をモデル化するための合成データを作成する。
BhasaAnuvaadを活用することで、既存のモデルよりも優れたパフォーマンスを持つ、インドの言語のための最先端の音声翻訳モデルであるIndicSeamlessをトレーニングします。
本実験は, 翻訳品質の向上を実証し, インド語音声翻訳の新しい標準を設定した。
アクセシビリティとコラボレーションを促進するために、許容ライセンス付きのすべてのコード、データ、モデルの重みをオープンソースでリリースします。
関連論文リスト
- Improving Speech Emotion Recognition in Under-Resourced Languages via Speech-to-Speech Translation with Bootstrapping Data Selection [49.27067541740956]
音声感情認識(SER)は、人間とコンピュータの自然な相互作用が可能な汎用AIエージェントを開発する上で重要な要素である。
英語や中国語以外の言語でラベル付きデータが不足しているため、堅牢な多言語SERシステムの構築は依然として困難である。
本稿では,低SERリソース言語におけるSERの性能向上のための手法を提案する。
論文 参考訳(メタデータ) (2024-09-17T08:36:45Z) - Navigating Text-to-Image Generative Bias across Indic Languages [53.92640848303192]
本研究ではインドで広く話されているIndic言語に対するテキスト・ツー・イメージ(TTI)モデルのバイアスについて検討する。
これらの言語における主要なTTIモデルの生成的パフォーマンスと文化的関連性を評価し,比較する。
論文 参考訳(メタデータ) (2024-08-01T04:56:13Z) - CoSTA: Code-Switched Speech Translation using Aligned Speech-Text Interleaving [61.73180469072787]
インド語から英語のテキストへのコード変更音声の音声翻訳(ST)の問題に焦点をあてる。
本稿では、事前訓練された自動音声認識(ASR)と機械翻訳(MT)モジュールを足場として、新しいエンドツーエンドモデルアーキテクチャCOSTAを提案する。
COSTAは、多くの競合するカスケードおよびエンドツーエンドのマルチモーダルベースラインを3.5BLEUポイントまで上回っている。
論文 参考訳(メタデータ) (2024-06-16T16:10:51Z) - Wav2Gloss: Generating Interlinear Glossed Text from Speech [78.64412090339044]
音声から4つの言語アノテーションを自動抽出するタスクであるWav2Glossを提案する。
音声からのインターリニア・グロッシド・テキスト・ジェネレーションの今後の研究の基盤となる基盤となるものについて述べる。
論文 参考訳(メタデータ) (2024-03-19T21:45:29Z) - IndicVoices: Towards building an Inclusive Multilingual Speech Dataset
for Indian Languages [17.862027695142825]
INDICVOICESは、145のインド地区と22の言語をカバーする16237人の話者による自然および自発的なスピーチのデータセットである。
1639時間は既に書き起こされており、言語ごとの平均的な時間は73時間である。
この作業の一部として開発されたデータ、ツール、ガイドライン、モデル、その他の材料はすべて公開されます。
論文 参考訳(メタデータ) (2024-03-04T10:42:08Z) - Breaking Language Barriers: A Question Answering Dataset for Hindi and
Marathi [1.03590082373586]
本稿では,ヒンディー語とマラティー語という2つの言語を対象とした質問回答データセットの開発に焦点をあてる。
ヒンディー語は世界第3位の言語であり、マラシ語は世界第11位の言語であるにもかかわらず、両方の言語は効率的な質問回答システムを構築するための限られた資源に直面している。
これらの言語で利用可能な最大の質問回答データセットをリリースし、各データセットには28,000のサンプルが含まれています。
論文 参考訳(メタデータ) (2023-08-19T00:39:21Z) - Neural Machine Translation for the Indigenous Languages of the Americas:
An Introduction [102.13536517783837]
アメリカ大陸のほとんどの言語は、もしあるならば、並列データと単言語データしか持たない。
これらの言語におけるNLPコミュニティの関心が高まった結果、最近の進歩、発見、オープンな質問について論じる。
論文 参考訳(メタデータ) (2023-06-11T23:27:47Z) - IndicTrans2: Towards High-Quality and Accessible Machine Translation
Models for all 22 Scheduled Indian Languages [37.758476568195256]
インドは10億人以上の人々が話す4つの主要言語族の言語と共に豊かな言語風景を持っている。
これらの言語のうち22はインド憲法に記載されている(予定言語として参照)。
論文 参考訳(メタデータ) (2023-05-25T17:57:43Z) - ComSL: A Composite Speech-Language Model for End-to-End Speech-to-Text
Translation [79.66359274050885]
公的な事前訓練された音声のみのモデルと言語のみのモデルからなる複合アーキテクチャ上に構築された音声言語モデルであるComSLを提案する。
提案手法は,エンドツーエンドの音声-テキスト翻訳タスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:42:15Z) - PMIndiaSum: Multilingual and Cross-lingual Headline Summarization for
Languages in India [33.31556860332746]
PMIndiaSumは、インドの言語に焦点を当てた多言語および大規模並列要約コーパスである。
私たちのコーパスは、4つの言語ファミリー、14の言語、196の言語ペアを持つ最大規模のトレーニングとテストの場を提供します。
論文 参考訳(メタデータ) (2023-05-15T17:41:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。