論文の概要: CoVoST: A Diverse Multilingual Speech-To-Text Translation Corpus
- arxiv url: http://arxiv.org/abs/2002.01320v2
- Date: Tue, 9 Jun 2020 19:24:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 03:09:29.037624
- Title: CoVoST: A Diverse Multilingual Speech-To-Text Translation Corpus
- Title(参考訳): covost:多言語音声からテキストへの翻訳コーパス
- Authors: Changhan Wang, Juan Pino, Anne Wu, Jiatao Gu
- Abstract要約: CoVoSTは11言語から英語への多言語による音声からテキストへの翻訳コーパスである。
11,000人以上の話者と60以上のアクセントで多様化した。
CoVoSTはCC0ライセンスでリリースされており、無料で利用できる。
- 参考スコア(独自算出の注目度): 57.641761472372814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spoken language translation has recently witnessed a resurgence in
popularity, thanks to the development of end-to-end models and the creation of
new corpora, such as Augmented LibriSpeech and MuST-C. Existing datasets
involve language pairs with English as a source language, involve very specific
domains or are low resource. We introduce CoVoST, a multilingual speech-to-text
translation corpus from 11 languages into English, diversified with over 11,000
speakers and over 60 accents. We describe the dataset creation methodology and
provide empirical evidence of the quality of the data. We also provide initial
benchmarks, including, to our knowledge, the first end-to-end many-to-one
multilingual models for spoken language translation. CoVoST is released under
CC0 license and free to use. We also provide additional evaluation data derived
from Tatoeba under CC licenses.
- Abstract(参考訳): エンドツーエンドモデルの開発とAugmented LibriSpeechやMuST-Cといった新しいコーパスの作成により、スポケン言語翻訳が最近人気を回復した。
既存のデータセットには、ソース言語としての英語との言語ペア、非常に特定のドメイン、あるいはリソースの少ないものが含まれる。
我々は11言語から英語への多言語翻訳コーパスであるCoVoSTを導入し、11,000人以上の話者と60以上のアクセントで多様化した。
データセット作成手法を記述し、データの品質に関する実証的な証拠を提供する。
また、私たちの知る限り、音声言語翻訳のための最初のエンドツーエンド多言語モデルを含む初期ベンチマークも提供します。
CoVoSTはCC0ライセンスでリリースされており、無料で利用できる。
また, CCライセンス下で, タトエバから派生した評価データも提供する。
関連論文リスト
- A multilingual training strategy for low resource Text to Speech [5.109810774427171]
ソーシャルメディアからのデータを、小さなTSデータセット構築に利用することができるか、また、言語間移動学習がこの種のデータに有効かどうかを検討する。
そこで本稿では,対象とする低リソース言語に対するTSモデルをトレーニングするために,外国語からのデータをどのように選択し,プールするかを検討する。
以上の結果から,多言語事前学習は単言語事前学習よりも,生成した音声の明瞭さと自然性を高めることが示唆された。
論文 参考訳(メタデータ) (2024-09-02T12:53:01Z) - Towards Building an End-to-End Multilingual Automatic Lyrics Transcription Model [14.39119862985503]
利用可能なデータセットを用いた多言語ALTシステムの構築を目指している。
英語のALTに有効であることが証明されたアーキテクチャにヒントを得て,これらの手法を多言語シナリオに適用する。
単言語モデルと比較して,多言語モデルの性能を評価する。
論文 参考訳(メタデータ) (2024-06-25T15:02:32Z) - Scaling Speech Technology to 1,000+ Languages [66.31120979098483]
MMS(Massively Multilingual Speech)プロジェクトは、タスクに応じてサポート言語を10~40倍増やす。
主な材料は、一般に公開されている宗教文書の読解に基づく新しいデータセットである。
我々は,1,406言語,1,107言語用1つの多言語自動音声認識モデル,同一言語用音声合成モデル,4,017言語用言語識別モデルについて,事前学習したwav2vec 2.0モデルを構築した。
論文 参考訳(メタデータ) (2023-05-22T22:09:41Z) - Learning to Speak from Text: Zero-Shot Multilingual Text-to-Speech with
Unsupervised Text Pretraining [65.30528567491984]
本稿では,対象言語に対するテキストのみのデータを用いたゼロショット多言語TS法を提案する。
テキストのみのデータを使用することで、低リソース言語向けのTSシステムの開発が可能になる。
評価の結果,文字誤り率が12%未満のゼロショットTSは,見当たらない言語では高い知能性を示した。
論文 参考訳(メタデータ) (2023-01-30T00:53:50Z) - The Multilingual TEDx Corpus for Speech Recognition and Translation [30.993199499048824]
音声認識(ASR)および音声翻訳(ST)研究を支援するために構築された多言語TEDxコーパスについて述べる。
コーパスはTEDxの8つのソース言語による音声録音のコレクションである。
テキストを文に分割し、ソース言語音声とターゲット言語翻訳に合わせる。
論文 参考訳(メタデータ) (2021-02-02T21:16:25Z) - Beyond English-Centric Multilingual Machine Translation [74.21727842163068]
我々は真の多言語多言語翻訳モデルを作成し、100言語のいずれかのペア間で直接翻訳できる。
大規模なマイニングによって生成された教師付きデータで、数千の言語方向をカバーするトレーニングデータセットを構築し、オープンソースにしています。
WMTのベストシングルシステムに競争力を持たせながら、非英語の方向を直接翻訳する場合、非英語モデルに焦点をあてると10 BLEU以上のゲインが得られる。
論文 参考訳(メタデータ) (2020-10-21T17:01:23Z) - The Tatoeba Translation Challenge -- Realistic Data Sets for Low
Resource and Multilingual MT [0.0]
本稿では,何千もの言語ペアに対するトレーニングとテストデータを提供する機械翻訳のための新しいベンチマークの開発について述べる。
主な目標は、世界言語をより広範囲にカバーしたオープン翻訳ツールとモデルの開発をトリガーすることである。
論文 参考訳(メタデータ) (2020-10-13T13:12:21Z) - Consecutive Decoding for Speech-to-text Translation [51.155661276936044]
COnSecutive Transcription and Translation (COSTT)は、音声からテキストへの翻訳に不可欠な手法である。
鍵となるアイデアは、ソースの書き起こしとターゲットの翻訳テキストを1つのデコーダで生成することである。
本手法は3つの主流データセットで検証する。
論文 参考訳(メタデータ) (2020-09-21T10:10:45Z) - CoVoST 2 and Massively Multilingual Speech-to-Text Translation [24.904548615918355]
CoVoST 2は、21の言語から英語、および15の言語への翻訳をカバーする大規模な多言語音声翻訳コーパスである。
これは、トータルボリュームと言語カバレッジの観点から、現在利用可能な最大のオープンデータセットである。
論文 参考訳(メタデータ) (2020-07-20T17:53:35Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。