From CNN to ConvRNN: Adapting Visualization Techniques for Time-Series Anomaly Detection
- URL: http://arxiv.org/abs/2411.04707v2
- Date: Fri, 08 Nov 2024 17:10:23 GMT
- Title: From CNN to ConvRNN: Adapting Visualization Techniques for Time-Series Anomaly Detection
- Authors: Fabien Poirier,
- Abstract summary: We focus on the learning process carried out by a time distributed convRNN, which performs anomaly detection from video data.
Despite their effectiveness, neural networks are often perceived as black boxes capable of providing answers without explaining their decisions.
- Score: 0.0
- License:
- Abstract: Nowadays, neural networks are commonly used to solve various problems. Unfortunately, despite their effectiveness, they are often perceived as black boxes capable of providing answers without explaining their decisions, which raises numerous ethical and legal concerns. Fortunately, the field of explainability helps users understand these results. This aspect of machine learning allows users to grasp the decision-making process of a model and verify the relevance of its outcomes. In this article, we focus on the learning process carried out by a ``time distributed`` convRNN, which performs anomaly detection from video data.
Related papers
- Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
We introduce a novel method for manipulating Feature Visualization (FV) without significantly impacting the model's decision-making process.
We evaluate the effectiveness of our method on several neural network models and demonstrate its capabilities to hide the functionality of arbitrarily chosen neurons.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - Active Learning on Neural Networks through Interactive Generation of
Digit Patterns and Visual Representation [9.127485315153312]
An interactive learning system is designed to create digit patterns and recognize them in real time.
An evaluation with multiple datasets is conducted to determine its usability for active learning.
arXiv Detail & Related papers (2023-10-02T19:21:24Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - On the Post-hoc Explainability of Deep Echo State Networks for Time
Series Forecasting, Image and Video Classification [63.716247731036745]
echo state networks have attracted many stares through time, mainly due to the simplicity and computational efficiency of their learning algorithm.
This work addresses this issue by conducting an explainability study of Echo State Networks when applied to learning tasks with time series, image and video data.
Specifically, the study proposes three different techniques capable of eliciting understandable information about the knowledge grasped by these recurrent models.
arXiv Detail & Related papers (2021-02-17T08:56:33Z) - Convolutional Neural Networks for Multispectral Image Cloud Masking [7.812073412066698]
Convolutional neural networks (CNN) have proven to be state of the art methods for many image classification tasks.
We study the use of different CNN architectures for cloud masking of Proba-V multispectral images.
arXiv Detail & Related papers (2020-12-09T21:33:20Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Bayesian Neural Networks: An Introduction and Survey [22.018605089162204]
This article introduces Bayesian Neural Networks (BNNs) and the seminal research regarding their implementation.
Different approximate inference methods are compared, and used to highlight where future research can improve on current methods.
arXiv Detail & Related papers (2020-06-22T06:30:15Z) - An Adversarial Approach for Explaining the Predictions of Deep Neural
Networks [9.645196221785694]
We present a novel algorithm for explaining the predictions of a deep neural network (DNN) using adversarial machine learning.
Our approach identifies the relative importance of input features in relation to the predictions based on the behavior of an adversarial attack on the DNN.
Our analysis enables us to produce consistent and efficient explanations.
arXiv Detail & Related papers (2020-05-20T18:06:53Z) - Hold me tight! Influence of discriminative features on deep network
boundaries [63.627760598441796]
We propose a new perspective that relates dataset features to the distance of samples to the decision boundary.
This enables us to carefully tweak the position of the training samples and measure the induced changes on the boundaries of CNNs trained on large-scale vision datasets.
arXiv Detail & Related papers (2020-02-15T09:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.